
www.manaraa.com

www.manaraa.com

The IMA Volumes
in Mathematics

and Its Applications

Volume 13

Series Editors
George R. Sell Hans Weinberger

www.manaraa.com

Institute for Mathematics and Its Applications
IMA

The Institute for Mathematics and Its Applications was established by a grant from
the National Science Foundation to the University of Minnesota in 1982. The IMA seeks to
encourage the development and study of fresh mathematical concepts and questions of con­
cern to the other sciences by bringing together mathematicians and scientists from diverse
fields in an atmosphere that will stimulate discussion and collaboration.

The IMA Volumes are intended to involve the broader scientific community in this
process.

Hans Weinberger. Director
George R. Sell. Associate Director

IMA Programs
1982-1983 Statistical and Continuum Approaches to Phase Transition

1983-1984 Mathematical Models for the Economics of Decentralized Resource Allocation

1984-1985 Continuum Physics and Partial Differential Equations

1985-1986 Stochastic Differential Equations and Their Applications

1986-1987 Scientific Computation

1987-1988 Applied Combinatorics

1988-1989 Nonlinear Waves

1989-1990 Dynamical Systems and Their Applications

Springer Lecture Notes from the IMA

The Mathematics and PhYsics of Disordered Media
Editors: Barry Hughes and Barry Ninham
(Lecture Notes in Mathematics, Volume 1035, 1983)

Orienting Polymers
Editor: J. L. Ericksen
(Lecture No«;s in Mathematics, Volume 1063, 1984)

New Perspectives in Thermodynamics
Editor: James Serrin
(Springer-Verlag, 1986)

Models of Economic Dynamics
Editor: Hugo Sonnenschein
(Lecture Notes in Economics, Volume 264, 1986)

www.manaraa.com

Martin Schultz
Editor

Numerical Algorithms
for Modem

Parallel Computer Architectures

With 57 Illustrations

Springer-Verlag
New York Berlin Heidelberg

www.manaraa.com

Martin Schultz
Research Center for Scientific Computation
Yale University
New Haven, CT 06520
USA

Mathematics Subject Classification (1980): 68C05, 65KXX

Library of Congress Cataloging-in-Publication Data
Numerical algorithms for modem parallel computer architectures /

Martin Schultz, editor.
p. cm. - (The IMA volumes in mathematics and its

applications: v. 13)
Papers presented at a workshop organized and sponsored by the

Institute for Mathematics and Its Applications of the University of
Minnesota.

Bibliography: p.
Includes index.
1. Parallel processing (Electronic computers)-Congresses.

2. Computer architecture--Congresses. 3. Algorithms-Congresses.
I. Schultz, Martin H. II. University of Minnesota. Institute for
Mathematics and Its Applications. III. Series.
QA76.5.N79 1988
004' .35--dc19

© 1988 by Springer-Verlag New York Inc.
Softcover reprint of the hardcover 1 st edition 1988

88-4953

All rights reserved. This work may not be translated or copied in whole or in part without the written per­
mission ofthe publisher (Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, USA), except
for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by the
Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Camera-ready text prepared by the editor.

9 8 7 6 5 432 I

ISBN-I3: 978-1-4684-6359-0

DOl: 10.1 007/978-1-4684-6357-6

e-ISBN-I3: 978-1-4684-6357-6

www.manaraa.com

The IMA Volumes in Mathematics and
Its Applications

Current Volumes:

Volume 1: Homogenization and Effective Moduli of Materials and Media
Editors: Jerry Ericksen, David Kinderiehrer, Robert Kohn, and J .-L. Lions

Volume 2: Oscillation Theory, Computation, and Methods of Compensated
Compactness

Editors: Constantine Dafermos, Jerry Ericksen, David Kinderlehrer, and
Marshall Slemrod

Volume 3: Metastability and Incompletely Posed Problems
Editors: Stuart Antman, Jerry Ericksen, David Kinderlehrer, and Ingo Mi.iller

Volume 4: Dynamical Problems in Continuum Physics
Editors: Jerry Bona, Constantine Dafermos, Jerry Ericksen, and David

Kinderiehrer
Volume 5: Theory and Application of Liquid Crystals

Editors: Jerry Erickson and David Kinderiehrer
Volume 6: Amorphous Polymers and Non-Newtonian Fluids

Editors: Constantine Dafermos, Jerry Ericksen, and David Kinderlehrer
Volume 7: Random Media

Editor: George Papanicolaou
Volume 8: Percolation Theory and Ergodic Theory of Infinite Particle Systems

Editor: Harry Kesten
Volume 9: Hydrodynamic Behavior and Interacting Particle Systems

Editor: George Papanicolaou
Volume 10: Stochastic Differential Systems, Stochastic Control Theory and

Applications
Editors: Wendell Fleming and Pierre-Louis Lions

Volume 11: Numerical Simulation in Oil Recovery
Editor: Mary Fanett Wheeler

Volume 12: Computational Fluid Dynamics and Reacting Gas Flows
Editors: Bjorn Engquist, Mitchell Luskin, and Andrew Majda

Volume 13: Numerical Algorithms for Modern Parallel Computer Architectures
Editor: Martin Schultz

Volume 14: Mathematical Aspects of Scientific Software
Editor: J.R. Rice

www.manaraa.com

vi

Forthcoming Volumes:

1986--1987: Scientific Computation

Mathematical Frontiers in Computational Chemical Physics

www.manaraa.com

CONTENTS

Foreword ... ix
Preface ... xi

Parallelization of Physical Systems on the BBN Butterfly: Some Examples. 1
William Celmaster

Solution of Large Scale Engineering Problems Using
a Loosely Coupled Array of Processors. .. 11

E. Clementi, D. Logan, V. Sonnad

A Look at the Evolution of Mathematical Software for Dense
Matrix Problems over the Past Fifteen years 29

J. J. Dongarra and D. C. Sorensen

A Graphical Approach to Load Balancing and
Sparse Matrix Vector Multiplication on the Hypercube 37

Geoffrey C. Fox

A Review of Automatic Load Balancing
and Decomposition Methods for the Hypercube. .. 63

Geoffrey C. Fox

Adaptive Methods for Hyperbolic Problems on
Local Memory Parallel Processors. .. 77

William Gropp

Systolic Algorithms for the Parallel Solution of
Dense Symmetric Positive-Definite Toeplitz Systems. .. 85

Ilse C. F. Ipsen

Ensemble Architectures and their Algorithms: An Overview 109
S. Lennart Johnsson

Problem Decomposition and Communication Tradeoffs
in a Shared-Memory Multiprocessor ... 145

Thomas J. LeBlanc

Domain Decomposition Preconditioners for Elliptic Problems
in Two and Three Dimensions ... 163

Joseph E. Pasciak

Methods for Automated Problem Mapping 173
Joel Saltz

Block Algorithms for Parallel Machines .. 197
Robert Schreiber

The LCAP System: An Example of a Multicomputer 209
Martin H. Schultz

A Block QR Factorization Scheme for Loosely Coupled
Systems of Array Processors ... 217

Charles Van Loan

www.manaraa.com

FOREWORD

This IMA Volume in Mathematics and its Applications

NUMERICAL ALGORITHMS FOR MODERN
PARALLEL COMPUTER ARCHITECTURES

is in part the proceedings of a workshop which was an integral part of the 1986-87 IMA
program on SCIENTIFIC COMPUTATION. We are grateful to the Scientific Committee:
Bjorn Engquist (Chairman), Roland Glowinski, Mitchell Luskin and Andrew Majda for
planning and implementing an exciting and stimulating year-long program. We especially
thank the Workshop Organizer, Martin Schultz, for arranging a broadly based program in
the area of computer architecture.

George R. Sell

Hans Weinberger

www.manaraa.com

PREFACE

It seems likely that parallel computers will have major impact on scientific computing. In
fact, their potential for providing orders of magnitude more memory and cpu cycles at low cost is
so large as to portend the possibility of completely revolutionizing our very concept of the outer
limits of scientific computation. It is now conceivable that computational modeling and simulation
will playa major role (perhaps even THE major role) in future advances in the technology of
engineering and scientific research and development. Along with traditional theory (mathematics)
and experiments it will form a triad of approaches to these technical problems.

The realization of this potential will require major advances in multiprocessor architectures,
parallel algorithm development and analysis, and parallel systems and programming languages.
Moreover, the optimization of the application of massively parallel architectures to real world
problems may provide the impetus for the development of entirely new approaches to applied
mathematical modeling. The papers in this volume represent many of the presentations at a
workshop whose theme was the simultaneously consideration of the applied mathematical, com­
puter Ilcience, and application aspects of parallel scientific computing. We believe that such an
interdisciplinary approach is likely to lead to the most rapid possible advances.

We wish to thank the Institute for Mathematics and its Applications of the University of
Minnesota and in particular its Director Professor Hans F. Weinberger for their invitation to
organize this workshop and for their assistance and gracious hospitality.

Martin H. Schultz
New Haven, Connecticut

www.manaraa.com

PARALLELIZATION OF PHYSICAL SYSTEMS
ON THE BBN BUTTERFLY: SOME EXAMPLES

WILLIAM CELMASTER*

Abstract. We will explore how parallelism is exploited in two physical systems which have been analyzed on
the BBN ButterflyTM. The first of these systems is a molecular model of liquid sulfur hexafluoride. The other
is shear-wave propagation in metal, as analyzed using finite element methods. The dynamical equations, in both
cases, involve local interactions. However, the systems are permitted to be spacially inhomogeneous. Consequently,
both systems can be effectively simulated with MIMD algorithms. These algorithms will be discussed.

The goal, in this talk, is to show how a couple of scientific programs can be organized to take advantage
of the MIMD (multiple instruction, multiple data) shared-memory medium-grain architecture offered by the BBN
Butterfly. The first of these programs describes the dynamics of interacting sulfur hexafluoride molecules. The other
is a finite element method (coFEM) program to simulate shear-wave propagation in metal. The dynamical equations,
in both cases, involve local interactions. Spacial inhomogeneities allow these interactions to vary throughout the
system. There are many other examples of such dynamical systems) and the methodology to be described will apply
in those cases as well.

1. INTRODUCTION

As we move into the era of dusty-deck Cray programs, it is well to remember that the scientific
or mathematical problems from which they originated may have been structured very differently
from what they are at present. They may, for instance, have been naturally formulated as MIMD,
rather than SIMD algorithms. Of course, certain specific library routines such as Gaussian elim­
ination and fast Fourier transforms, have been the subject of a tremendous amount of numerical
analysis research. For these "kernel" algorithms, all sorts of useful restructuring has been exploited
and the scientist can choose the formulation most appropriate for the available architecture. But
in large-scale scientific and engineering projects, there usually can be found substantial portions
of code which have not previously been optimized for any particular architecture. The question
then becomes, "How easy is it for the the scientist or engineer to obtain efficient performance?"

One of the goals of present and future BBN Butterfly Computer architectures is to facilitate
the parallelization of algorithms. There are at least two ways in which these goals are achieved:
(1) The MIMD nature of the Butterfly permits the general exploitation of parallelism, and (2) the
shared-memory model allows maximmn flexibility in data management. The first part of this talk
will be a description of how the Butterfly architecture attempts to achieve the goals of providing a
MIMD shared memory programming environment. In the second part of the talk we will explore
a methodology for parallelizing, in the Butterfly environment, certain kinds of physical problems.

II. BUTTERFLY ARCHITECTURE

It might be ideal to have a number of independent processors whose memories are all inter­
connected. If there were P such processors, then there would be O(P2) wires connecting them in
all possible pairs, and each slab of memory would require O(P) ports. With present technology,
this would be prohibitively expensive. Therefore other connection schemes must be used. BBN
has chosen to use a network-switch technology. Noteworthy features of the Butterfly switch are:

• It uses packet-switching techniques developed over the years at BBN.

• Data is transferred serially between processors.

• There are O(n log n) switching nodes.

*BBN Advanced Computers Inc., 70 Fawcett Street, Cambridge, MA 02238

www.manaraa.com

2

• There is an O(n) bandwidth.

• The data rate is 32 million bits per second per path.

• The time to access a data item through the switch is about four microseconds.

• The switch can be reconfigured and expanded to allow for anywhere between two and 256
processors to be connected.

In order to explain how the switch works, a simplified version is shown in Figure 1. (For more
details see Ref. [1]). Each circle represents a 2 X 2 crossbar which connects the two ingoing wires
to the two outgoing wires. (The actual switch has 4 x 4 crossbars rather than 2 X 2 crossbars.)
Processors PI through Ps can then each find a path, via the crossbars, to the other seven processors.
Figure 1a shows data being sent from PI to P5 and other data being sent from P5 to P3 • In this
case there is no conflict between the messages. For contrast, Figure 1b shows that when data
is sent from P4 to P6 , both paths require a common wire. There is contention between the two
messages and only one piece of data gets through. The other must wait and retry. In the larger
Butterflies, an extra bank of nodes is introduced in order to provide alternate paths. This helps
to reduce contention.

Each processor board has a Motorola MC68020 processor with an MC68881 floating-point
coprocessor. On each board, processor and interprocessor memory management is performed
with a processor node controller (PNC). Each board comes with one megabyte of memory and
is expandable to four megabytes, providing a maximum possible memory of one gigabyte for a
fully expanded system. At the moment, program'development is done on a host such as a VAX
or Sun Microsystems workstation, and programs are downloaded to the Butterfly. C, Fortran and
Lisp (both Common Lisp and Scheme) are available. The Butterfly native operating system is
called Chrysalis. Application programmers can access the machine parallelism through Chrysalis
routines, as well as through a higher-level library of routines known as the Uniform System.

In order to effectively program the Butterfly, the programmer must clearly understand the
distinctions between different types of memory. Each processor can reference memo:cy on either its
own board or it can access memory, through the switch, on another processor board. The first type
of memory reference is called local and the second is called remote. Although the switch is very
fast, reIllQj;e contention-free references take from three to five times longer than do local references.
Faster access to remote data can be obtained by using block transfer operations. The distinction
between remote and local memory is handled entirely by the hardware, so the programmer does
not have to keep track of where a given word memory is located. However, various Chrysalis and
Uniform System routines do allow for specification of which processor board should contain which
data. Generally, the programmers choose to be sheltered from such decisions.

Another important memory distinction to be made is that between private and shared memory.
This is a software distinction. If a process wants to share some memory with another process, that
memory must explicitly be declared as shared memory. Otherwise, it is private. It usually makes
sense that private memory be local to the processor on which the process is active and, indeed,
Chrysalis supports that concept. Shared memory, on the other hand, can be anywhere.

On the basis of these facts about memory, the following considerations apply to performance

tuning:

• When possible, memory references should be local .

• When remote references must be performed, it is best to use block transfers of data if

possible .

• Contention for shared data should be reduced by avoiding situations where several proces-

www.manaraa.com

DAnfMI
SENT

DATI 1M 2
SENT

DAl1JM I
SENT

DAHIM2
SENT

3

P,

P,

P,

P,

P,

P,

p. Figure 1 a

P,

P,

P,

P,

P,

P,

". Figure Ib

P,

DATUM 2 DESTINATION

P,

DAruM I DESTINATION
P,

P,

P,

P,

DATIJM I DESTINATION
P,

DATUM 2 DESTINATION
P,

P,

Figure 1: Operation of the Butterfly switch

sors simultaneously try to access memory on a single processor. This contention can be
further reduced by scattering related data amongst processors.

III. THE PHYSICAL MODELS

The first of the two models to be discussed here is the molecular dynamics simulation developed
by G.S. Pawley [2J and C. Baillie with the help of E. Tenenbaum and W. Celmaster. The problem
is to simulate the dynamics of SF6 (sulfur hexafluoride) molecules, whose interatomic interactions
are given by the Lenard-Jones potential:

(1)
a b

U(r) = r6 - r12

The temperature (kinetic energy) is initially quite large, so the molecules jiggle around randomly
in the liquid phase. The liquid is gradually cooled, in the simulation, by scaling down the molecular

www.manaraa.com

4

velocities and thus drawing off kinetic energy. When the temperature has finally dropped to a low
enough value, one expects to find that the molecules will have arranged themselves in a crystalline
structure. This is the solid phase. Even more interesting is the plastic phase, which is intermediate
between the liquid and solid phases. In fact, one of the major scientific goals of the present work
is to study the liquid-to-plastic transition.

The other physical model to be discussed is the simulation of metal when subjected to stress
or strain. The work to be discussed was done by H. Allik, S. Moore, E. O'Neil and E. Tenenbaum
[3]. Two related engineering problems were investigated by these people. The first of these-the
so-called transient problem-is the analysis of a shear wave in a piece of metal subjected to a time­
dependent force. The other problem studied by Allik and collaborators is the static problem,
where internal stresses are analyzed in a strained piece of metal which is in equilibrium. In both of
these investigations of metal, the elasticity equations were analyzed by the finite element method
(referred by the authors as coFEM). Today's talk will present the analysis of the transient problem.
(The static analysis was computationally dominated by the linear equation solver, which was based
on the method of Gaussian elimination for reasons of robustness. Other solvers are presently under
investigation by Allik and Moore, and are expected to result in more efficient parallelizable code.)

Although the two systems-molecular dynamics and shear wave dynamics-seem vastly different,
they share some critical features:

• Both are governed by Newton's laws of motion.

• The interaction forces are local.

• The systems are permitted to be spacially inhomogeneous in their local connectivity. More
precisely, in the molecular dynamics case, the number of effectively interacting neighbors
can vary from one molecule to the next. In the case of stressed metal, the local shape
can vary from one position to the next (consider an airplane wing), and some regions may
experience plasticity, i.e., nonlinearity.

Many other physical systems share these features. Therefore it is worthwhile to try to identify
some common methodology for parallelization.

IV. METHODOLOGY

A. Data Storage. Both algorithms involve manipulations on shared arrays which describe
the state of the system. The molecular dynamics (MD) arrays can be described as C language
structures of the form STATE[MOL]. Each state structure contains, for instance, the x, y and z
coordinates of each of the sulfur and fluorine atoms. Examples would be

STATE[MOL]. fluorine.1.x,
STATE[MOL]. fluorine.2.y, etc.

Velocities, accelerations, and several other quantities are also stored. Similarly, the coFEM
arrays describe the nodal displacements, velocities, and forces associated with each element, as
well as structural information identified with that element.

How should these arrays be stored? There are two apparently orthog<mal techniques for stor­
age. The first (block storage) is reminiscent of the style used for caching and out-of-core algorithms,
and facilitates remote/local performance tuning. The other technique (scatter storage) is special
to the switch architecture and is required for contention reduction. In order to understand these
two methods, consider a vector V = (Vi, ... , V6), which is to be shared among three processors,
PI, P2 , and P3 . Suppose that each processor needs to modify some of the entries in V. With
block storage, V would be stored in a block of contiguous memory in, say, processor Pl. Then

www.manaraa.com

5

all three processors could block-copy V to local memory, perform the calculations, and block-copy
the results back to V. Although the transfer time is decreased through the use of block-copy (as
opposed to single-word remote references), there is strong contention for processor P3 , and that
will degrade the performance. On the other hand, if the goal was contention reduction, V would
be "scattered" among the three processors. For instance, VI and V2 would be stored in PI, V3 and
V4 would be stored in P2 , etc. Block-copying would no longer be effective, but contention would
be reduced significantly.

In practice, the situation is a great deal more complex. For example, with arrays, one can
combine the block storage and scatter storage methods. Rows can be distributed to different
processors. For many computations this both reduces contention and allows effective use of block
transfers. In fact, this operation of array scattering is so common, that it is done automatically
by a single Uniform System instruction, AllocScatterMatrix.

This operation was used in both the MD and coFEM programs for storing the state arrays.
However, it may not always be possible to store data in such a way that both block storage and
scatter storage are accomplished simultaneously for a given access pattern. Studies done on the
MD problem indicate that it is best to opt for scatter storage (in fact, as shown in a later section,
block transfers improved the MD performance by only about 10 per cent).

B. General Organization of the Calculation.

(1) Molecular Dynamics.

1. From the relative positions of the atoms, the Lenard-Jones potential is used to compute
the forces acting on each atom. The only pairs considered are neighbor pairs defined by

11"1 -721 ~ d.

2. (b) From the forces on each molecule, the accelerations are computed using F = ma, and
then the new atomic displacements are computed from those. The fundamental equations
used are Beeman's [4] finite-difference solutions to Newton's second law:

(1 2
(2) xn+l = Xn + Vn 6.t) + "6(4an - an_r)(6.t)

(3)

(4)

(5)

and
1

vn+l = Vn + "6(2an + 5an-l - an_2)(6.t)

3. Derived quantities, such as pressure and energy, are computed. Adjustments are made
based on these quantities, to the positions and velocities. The program is then continued
from step 1.

(2) Transient Analysis.

1. From the displacements and velocities of nodal points in the elements, the stress-strain
calculation is performed in order to obtain the nodal forces.

2. From the nodal forces, the accelerations are computed and then integrated to find the new
displacements and velocities. The finite-difference solutions to Newton's second law are,
in this case, the central-difference solutions

vn+~ = vn_~ + a(6.t)

and

Xn+l = Xn +vn+1(6.t)

3. Derived quantities, if any, are computed. Control then returns to step one.

www.manaraa.com

6

C. Dynamical Load Balancing. Since the state updates are done for each molecule (or
element), the natural unit of work is indexed by the molecule (or element). On a serial machine,
this would be indicated by a DO loop over molecule (or element) indices:

for (i = O;i < max; i ++) update (i);

On the Butterfly, using the Uniform System, this is converted to

GenOnI(update, max);

The procedure GenOnI() dynamically allocates tasks such as update, to processors. If there are
P processors available, the first P iterations (update(O), ... , update(P -1)) are farmed out to those
processors, and as soon as one of those processors is finished with its task, it obtains the next
available task on the "task-queue." It is not important whether all tasks take the same amount
of time to complete. If some processors are finished earlier than others, they just grab the next
available task and continue. Efficient MIMD computation can therefore be done.

The dynamical allocation should be contrasted with static allocation, where tasks are pre­
assigned to processors. In the static case, straggling tasks may eventually force all other processors
to be idle for significant amounts of time. This does not occur in the dynamical balancing, provided
that the number of tasks far exceeds the number of processors, MAX» P.

There is a further constraint which must be satisfied for efficient tasking. This granularity
constraint is that the task-size must be much larger than the context-switch overhead associated
with obtaining a new task. The Uniform System reduces the context-switch overhead by pre­
loading all processors with the program template. Thus, rather than MIMD, the style here is
STMD - single task, multiple data - which is similar to the SPMD paradigm of Darema-Rogers,
Newton and Pfister [5J.

Both the molecular dynamics and coFEM programs satisfy the tasking constraints of the above
paragraphs. Efficient parallelization is therefore possible. The inhomogeneity of the physical
systems would make it difficult to efficiently perform the computations on a SIMD or vector
machine, however.

D. Newton's Third Law, Atomic Operations and More Load-Balancing. Newton's

third law asserts that if F AB represents the force that A exerts on B, then - F AB turns out to
be the force that B exerts on A. The computational significance of this law is that if you have
updated the force contribution to A, due to B, then yOu do not have to separately compute B's
contribution to A.

In the molecular dynamics problem, this observation is implemented by the following: Let
MOL be the molecule under consideration (it is the argument of update()). Its force contributions
come from its neighbors. A given neighbor, indexed by NAB, contributes to the force only if NAB

> MOL. However, whenever F MOL,NAB is computed, NAB's force is updated by - F MOL,NAB.

Thus half of the computations are saved. It is easy to persuade oneself that, when using this
scheme, if the molecular numbering scheme is essentially random, then the task size will tend to
decrease as MOL increases. That is because there will be a tendency for fewer neighbors to satisfy
the inequality NAB> MOL. As a result, load balancing is even more successful than one might
otherwise have guessed. The reason is that, even if there are end-stragglers at the barrier (MOL
= MAX), they will generally be of smaller-than-average size, so the straggler penalty is decreased.
If the algorithm had been, instead, that force contributions are computed if NAB < MOL (rather

www.manaraa.com

7

than NAB> MOL), the above analysis would lead to the conclusion that straggler penalties would
be more severe and that load balancing would be less successful.

Because molecule MOL updates the forces on other molecules, as well as updating its own force,
the force update operation must be done atomically. That is, in a parallel processing situation, it
could happen that two molecules are simultaneously trying to update the force on a third molecule.
If the update consists of several machine instructions - i.e., it is not atomic - then the two update
efforts will interfere with one another. It is therefore necessary to lock the update sequence and to
unlock it when it is done. This is illustrated in the pseudocode below.

For all neighbors NAB with NAB> MOL {

(1) S = force between MOL and NAB

(2) update a local force, F -> F = F + S
(3) LOCK [NAB];

STATE [NAB].force = STATE [NAB].force - S;
UNLOCK [NAB]; }

LOCK[MOL];
STATE[MOL].force=STATE[MOL].force +F;
UNLOCK [MOL];

The Uniform System provides simple LOCK and UNLOCK instructions so that the pseudocode
implementation is straightforward.

Similar considerations apply to the transient analysis, although Newton's third law appears in
a more indirect fashion. Each element shares its nodes with other elements. When the node force
is updated by an element, it must also be updated on its neighbor's node. This update occurs
atomically just as for the molecular dynamics calculation.

One further point worth mentioning, while on the subject of locks, is the fact that lock oper­
ations introduce both contention (for the key) and serial bottlenecks with respect to the locked
sections of code. These effects are reduced considerably by using a separate lock for each molecule
or element, as indicated in the above pseudocode.

v. WAVEFRONT SYCHRONIZATION

In both the molecular dynamics and coFEM analyses, each time step involves at least two parts:
the force update and the displacement/velocity (d/v) update. The force update in a given spacial
region must be completed before the d/v update and vice versa. In the simplest implementation of
this sequencing, all molecules (or elements) complete their force update before they all begin their
d/v update. This sequencing is known as barrier synchronization, since a "barrier" is erected which
is removed only upon completion of the last task in the set. As described earlier, if the number
of tasks far exceeds the number of processors, barrier synchronization is fairly efficient. However,
there is a better type of synchronization which can be used in physical systems of the type described
here. The physical basis for wavefront synchronization is this: in a dynamical system with local
interactions, information tends to propagate through the system at a certain speed. Even though
a certain region in the system may suddenly start to experience rapid changes, a distant region
will not immediately respond to that fact. Thus, if forces have been updated in portion A of
the system, but have not yet been updated in portion B, the computation of displacements and
velocities can proceed in portion A, even though they are not yet ready to proceed in B. There
is no danger of any portion of the system getting too far ahead of any other portion because all
portions are connected by an information wave (thus the name "wavefront synchronization").

www.manaraa.com

8

The details of this technique, for the transient analysis, are described in [3J. A task must wait
until its nodal displacements are current. When the displacements are current, the force update
is computed for each node and then stored atomically. A tally is kept, at each node, to indicate
whether all of its elements have updated their force contributions to that node. If the element-task
in question is the last one to update a particular node, n, then it computes the new velocities and
displacements for that node. Otherwise, the task exists.

1.0

.9
T
2·2'11%

a. .8 I-

~
!:::

.7
l-

II .6 -

C .5
c
~ .1 -g
W .3 • Overlapped Melhod (Typic<ll)

.2 • Non Ovetl<lppcd (60x3x3 Rod)

.1 • Non Ovcrl<lpped (10x2x2 Rod)

Processors

Figure 2: Comparison of Transient Algorithms for Rod Problem

VI. RESULTS

Figure 2, taken from [3J, shows the results of running the transient coFEM program on the
Butterfly. The absolute time (not shown) is about 30 percent slower, on one Butterfly node, than
on a VAX 11/785. Three separate curves are shown. The "overlapped method" refers to wavefront
synchronization as opposed to barrier synchronization (not overlapped). The rods are divided into
different numbers of elements. Contrast a 60 x 3 x 3 rod to a 40 x 2 x 2 rod. In the latter case
there are fewer tasks and one loses efficiency from barrier synchronization. The jagged appearance
of the curve is indicative of straggler degradation. The case of wavefront synchronization is clearly
more efficient and, in fact, approaches perfect parallelization.

Figure 3 shows the results of running the molecular dynamics program on the Butterfly config­
ured with from 1 through 30 nodes. The analyses were all done with barrier synchronization but
would have been slightly improved with wavefront synchronization. In one case, we used an algo­
rithm where none of the remote references utilize the block transfers. For 30 processors we obtain
83% efficiency. In the other case, block transfers were used for some of the remote references. Ac­
tually, some unnecessary data was transferred-data which happened to be interspersed throughout
the blocks that were needed. Thus this block transfer technique could have been tuned to further
enhance the performance. The present implementation yields 93% efficiency for 30 processors.

The main significance of these results is this: excellent performance can be obtained even if
none of the data is referenced using block-transfers. Thus, there is no need for the programmer
to expend energy in doing block storage. The results suggest that it may be easier to develop

www.manaraa.com

9

algorithms for the Butterfly than it would be for a vector machine, whose performance critically
depends on the patterns of data reference.

VIr. SUMMARY

For physical systems interacting via local dynamics, a certain programming methodology has
been prescribed for the Butterfly. The most important points are:

• Tasks should be indexed by local elemeni.9 such as the molecule, or the finite element.

• State information should be scattered. If block transfers are desired, each element's state
should be stored in a contiguous block.

• Tasks are dynamically allocated to processors, using the Uniform System routine
GenOnI() or a variation thereof.

• Force updates should be done atomically by all of those elements that are influenced by a
particular force.

• Wavefront synchronization allows disjoint regimes to time-step independently, and thus
reduces the effect of straggling tasks.

30

EP

"

'0

"

'0

'0

Molecular
Dynamics (Sr6)

"
~ r = Number of Processors

EP '" Effective I'rocessors

'0 " p

Fig 3: Results of Parallelizing Molecular Dynamics and Transient Analysis

The results, for molecular and transient analysis, as shown in Figures 2 and 3, show that
nearly linear speedup (i.e., complete parallelization) is possible through 64 or more processors.
Furthermore, and importantly, excellent results can be obtained even if block transfer methods

are avoided.

REFERENCES

[IJ BBN, Technical Report, # 6148 (1986).
[2J G.S. PAWLEY AND G.W. THOMAS, Phys. Rev. Lett, 48, 410 (1982).
[3J H. ALLIK, S. MOORE, E. O'NEIL AND E. TENENBAUM, Butterfly Finite Element Software, BBN Technical

Memorandum, No. NL-206 (1986).
[4J D. BEEMAN, J. Comput. Phys, 20, 130 (1976).
[5J F. DAREMA-RoGERS, V.A. NORTON AND G.F. PFISTER, IBM Research Report RC 11552, (#51726) (1985).

www.manaraa.com

SOLUTION OF LARGE SCALE ENGINEERING PROBLEMS USING A LOOSELY

COUPLED ARRAY OF PROCESSORS

I. Introduction:

E. Clementi, D. Logan, V. Sonnad

Scientific and Engineering Computation

Mail Stop 428

IBM, Neighborhood Road

Kingston, NY 12401

Our interest in parallel processing systems has been motivated by the need to solve large scale computa­

tional problems occuring in theoretical chemistry, biophysics, and more recently in engineering. We have

been experimenting with a loosely coupled system, that uses a master processor to control a group of inde­

pendent slave processors. This architecture was designed to meet the following objectives: the initial system

I) should be classifiable as a "supercomputer",

2) be easily extended to higher computing speeds,

3) be flexible and fault tolerant,

4) permit easy migration of large codes to parallel execution,

5) be relatively inexpensive.

To achieve this goal, an experimental system at IBM Kingston has been configured with a variety of

IBM mainframes as masters (43xx, 308x, and 3090 systems), and 20 powerful attached processors as slaves.

The latter are either FPS-164s or FPS-264s, manufactured by Floating Point Systems, chosen because of

their high processing speeds and the inclusion of 64-bit floating point hardware as a standard feature.

Large codes for scientific and engineering computations are usually written in Fortran. If we wish to

execute such codes in parallel, then we need extensions to the Fortran language which permit the expression

of various parallel constructs, such as fork-and-join, task synchronization, and mutual exclusion of critical

sections (with locks). This approach has been implemented through the developement of a precompiler which

processes such directives and expands them into standard systems communications software prior to compila­

tion. In the same spirit, we strive to minimize the additional coding necessary for parallel execution, and try

to retain as much as possible, the structure of the original sequential code. On the whole, we consider our

approach to parallel processing to be "off the shelf"; this has been an important factor in the rapid and cost

effective development of our system.

A detailed description of the basic system is given in Section II; operating system considerations are

given in Section III. In Section IV we describe extensions to the system hardware that have enhanced the

basic architecture. In section V we discuss strategies for parallel computation, and in section VI present

results on several algorithms and practical applications. Section VII ends this paper with a few concluding

remarks.

www.manaraa.com

12

II. Basic Configuration of ICAP :

There are at present two parallel processing systems functioning in our laboratory; both share the same

fundamental architecture of a host with attached processors. The original configuration did not have a direct

path for transmission of data between processors, and hence the system was termed ICAP, (for "loosely

Coupled Array of Processors"). The first of these systems, called ICAP-I, is hosted either by an IBM 3081 or

4381 and attaches to 10 FPS-164 array processors, (AP's). The second and more powerful system, called

ICAP-2, employs as host a dyadic IBM 3084 and 10 FPS-264's as slaves. The two systems are architecturally

very similar, and differ mainly in the operating system used by each. For the purpose of brevity we will

confine ourselves to a description of of the ICAP-I system as it was operating in the second half of 1986. We

emphasize that both systems are experimental, and evolve continuously in both hardware and software.

Figure I: Schematic layout of the basic ICAP-I system.

ICAP-I is structured so that six FPS-I64's are connected to an IBM 3081 host, and the remaining four

are attached so that they can be switched between an IBM 3081 host or the IBM 4381 host. This gives us the

flexibility of a "production" system with six AP's and a "dcvelopment" system with four AP's. The AP's

attach to the hosts through IBM 3 Mbyte/sec channels. A schematic diagram of the configuration appears in

Figure I. Each AP contains an independent CPU and its own memory and disk drives. The CPU on the

www.manaraa.com

13

FPS-164 is capable of II million floating point operation per second (peak performance). Each of our

FPS-164's has 8 Mbytes of random access memory, and is connected to four 135 Mbyte disks, for a total of

5.4 Gigabytes. In addition there are banks of IBM 3350 and IBM 3380 disks accessible to the host com­

puters, totalling about 25 Gigabytes of disk storage. Tape drives, printers, and communication network

interfaces complete our configuration.

To complete the description of ICAP-I, we mention that each of the AP's has been equipped with two

FPS-164/MAX boards; these arc special purpose boards supplied by FPS, each of which contains two adders

and multipliers, and can speed up matrix operations to a peak of 22 Mflops/board. This has upgraded our

peak performance from 110 to 550 Mflops. Ultimately our system could grow to 3410 Mflops peak capa­

bility, using 15 boards per processor. However it is clearly desirable to first explore the gains that one can

realistically obtain with only a few 164/MAX boards per AP, so we have settled at a peak performance of

550 Mflops.

III. Operating System Considerations:

The ICAP-I system, hosted by either an IBM 3081 or 4381, runs under the IBM Virtual Machines!

System Product (VM/SP) operating system (Ref. I). For the AP's, we use the systems software provided by

Floating Point Systems (Ref. 2). We have not found it necessary to modify either sets of software in order to

run our applications in parallel. VM/SP is an operating system in which jobs run on virtual machines (VM)

created by the system; these VM's simulate real computing systems. The standard software provided by

Floating Point Systems allows only one AP to be attached to a VM. Since we need more than one AP for a

task running in parallel, our solution has been to introduce "slave" VM's to handle the extra AP's we need.

The communication between processors is transparent to the user since the details are handled by the pre­

compiler.

The ICAP-2 system utilizes as host, a dyadic IBM 3084 that runs under the IBM Multiple ',,,mal

Systems (MVS) operating system. Connection to each individual AP is effected within the MVS op;;raiing

system through the creation of subtasks; communication between the subtasks and the attached processors

takes place as in leAP-I. However, in the MVS environment, system software permits the overlap of virtual

memories of master and slave subtasks such that they may share common memory. The cost of data transfer

between host and slave subtasks is thus significantly reduced in the MVS system.

Regardless of the differences in communications in the two operating systems, it is important to note

that programs written for one system are easily migrated to the other, since the AP software remains the

same, and the precompiler handles the remaining details.

IV. Extended Architecture:

In our initial configuration, each AP. could communicate only with a slave VM or sub task; AP to AP

communication was achieved indirectly by having an AP communicate to the host, which then communicated

to the second AP. However, communication overhead is an important consideration in some applications, so

www.manaraa.com

14

the lack of direct AP to AP communication was a serious limitation. To address this problem, the system

has been extended using three independent but complementary approaches.

The first is the incorporation of 5 locally shared bulk memories that link the 10 AP's. Each memory is

32 Mbytcs in size and is multiply connected to four attached processors, (Fig. 2). This configuration is that

of a ring with mulliple connections per AP allowing added flexibility and fault tolerance. Each memory is

capable of sustained data transfer ratcs of 44 Mbyte/sec when attached to the FPS·I64. Communication

bctwcen the AP's and bulk memory is carried out by Fortran callable routines, (Ref 3).

leAP 1

o Double FPS Bus

88 FPS-164/MAX

CD SeA Bulk Memory

c==> 512 MBYTE MEMORY

Figure 2: Extensions to ICAP·I architecture.

The second feature, also indicated in Figure 2, is the addition of two fast buses that link all of the APs

in a ring configuration. This bus, designed and built by FPS, is capable of transferring data at rates of 22

Mbytes/sec between AP's.

A third major addition is the installation of a globally shared memory of 512 Mbyte capacity (again

shown in Fig. 2). Each one of these global memories can be connected to 12 processors. Memory interleaving

permits up to three processors to talk to the memory simultaneously, allowing a maximum data transfer rate

of 132 Mbytes/second. This modification allows both ICAP·I and ICAp·2 to be optionally configured as a

tightly coupled array of processors.

We therefore have four independent, non·conflicting paths for data transfer between AP's : IBM chan·

nels for slave·host·slave communication, the bus for message passing and broadcasting between two

www.manaraa.com

15

processors, the ring of locally shared memories for nearest neighbour communication, and the central

memory for asynchronous communication between any two AP's within a system. This will allow us to

experiment and implement algorithms that can make effective use of one or more of these data paths.

A third system termed ICAP-3, is essentially a coupling of ICAP-I and ICAP-2, using an IBM-3090 with

high performance vector features as a master; the interconnect scheme is shown in Fig. 3. The goal is to

achieve a system with a high level of flexibility, and the ability to achieve high sustained rates of computation

on problems that are not easily solved by today's supercomputers.

LCAP-\
(VII)

Figure 3: Configuration of ICAP-3 system.

V. Strategies for Parallel Processing In Engineering:

The initial applications on ICAP were devoted to areas of computational chemistry and biophysics (Ref.

4). The considerable success of this architecture in speeding up solutions of such problems, has encouraged

exploration in applying this architecture to other fields. In this paper we explore some approaches for parallel

implementation of engineering problems.

Applications programs in engineering can be very broadly grouped into a few major areas: fluid

mechanics, heat transfer, dructural mechanics, and electro-magnetism, (corresponding roughly to depart­

ments within an engineering school), and the field of optimization which is interwoven into almost all of the

above areas. The list of applications within each field however is almost endless, and any attempt to

approach parallel computation on an application by application basis is an unending task. For the purpose

of devising a strategy for parallel computation within engineering, it is much more constructive to examine

the underlying methods that arc used in various applications. The most commonly used methods for the

solution of problems in engineering arc the following:

www.manaraa.com

16

Finite differences : This method is further broken down into the categories of explicit and implicit

methods. The major computational component of explicit methods, is the calculation of new values from old

by substitution into algebraic expressions; implicit methods require the solution of sparse systems of coupled

algebraic equations. It is useful to have another category of semi-implicit methods, where the problem is

formulated as an implicit method, but is solved by methods such as AD! or SOR, which decouple large

coupled sets of equations into smaller, more manageable problems.

Finite elements: This method has historically been linked to structural engineering, but is now becoming

widely accepted as a general method for the solution of partial differential equations. While it is possible to

use explicit schemes with this method, implicit methods are the rule, and for large problems, the solution of

coupled systems of large sparse equations, and the calculation of the eigenvalues and eigenvectors of sparse

matrices form the major computing component of this method.

Spectral and Pseudo-Spectral Methods: The basic concept used in these methods is to transform the

problem from the physical domain into the spectral domain using typically Fourier or Chebyshev trans­

forms. The problem is then addressed in the spectral domain, and an inverse transform is performed to get

the answer in the physical domain. For linear problems, one forward and reverse transformation is sufficient,

and the major computing component is the series of operations performed in the spectral domain. For non­

linear problems it is necessary to transform back and forth between the physical and spectral domains at

every time step, and the major computational component is the transformation operation.

Boundary Elements: This method has an advantage over other discretization methods, because it oper­

ates on integral equations, and hence reduces the dimension of the problem by one: e.g., a three-dimensional

body needs to be discretized only on its surface and not over the entire volume. This can be a distinct advan­

tage when the solution is required only on the boundary. This method requires the solution of a system of

equations that is dense (and usually nonsymmetric); equation solvers that apply to sparse systems are inap­

propriate. LV decomposition is a suitable approach, because there is no problem of fill; furthermore, the

equations are normally well conditioned, and pivoting is not necessary.

VI. Parallel Algorithms On leAP:

It is seen from the discussions in the previous section that there is a set of core algorithms that form

major computational components of several methods used in engineering analysis. By focusing on the parallel

implementation of these algorithms, it is possible to address applications within several different branches of

engineering. We discuss below, the parallel implementation of some of the more important algorithms, and

describe their performance on the ICAP system.

1) Householder Reduction of a Matrix to Tridiagonal or Hessenberg form,'

Because of its general importance in engineering and applied science and its high operation count, (order

nO '3 for an n x n matrix), the eigenvalue problem has been the subject of repeated efforts over the past

decade to determine efficient parallel algorithms. Most of these have been directed towards the Jacobi

method, where the element of concurrent computation is the zeroing of elements or blocks that do not share

www.manaraa.com

17

any common indices. Given a suitable interconnect scheme of parallel processors, and ingenious scheduling

algorithms, the parallel version of this method has often given near linear speedup.

However, success in this regard is tempered by the fact that the Jacobi algorithm is usually inferior to

the method of reducing the system to tridiagonal form, (or Hessenberg form if unsymmetric), followed by

the iterative QR factorization and RQ updates. In the following we consider a parallel version of the

reduction phase of this algorithm to tridiagonal or Hessenberg form, and its performance on the ICAP

multiprocessor system (Ref. 5). Parallel methods for determining the eigenvalues of tridiagonal matrices are
described in several articles in Ref. 6

The fundamental algorithm for Householder reduction, for a matrix of size n**2, can be represented as,
(Ref 7):

DO I i= I,n

A = H(i) • A • H(i)

where H is the Householder transformation and is utilized in its outer product form

H = I - w • wet) ; (w(t) is the transpose of w).

H(i) is the transform that reduces the ith column to tridiagonal form and is constructed in the usual manner

from the last n-i elements of the appropriate column of A, following its (i-I)th update. Parallelism in this

procedure is limited in that the output of stage i is the input for stage i + I. However the basic step written as

A(i + I) = (I - w * wet)) • A(i) * (I - w • wet))

admits a high degree of parallelism if it is executed in the following three steps:

I. B = (I - w • wet)) • A(i)

2. c = B· w

3. A(i + I) = B - c • wet)

Considering a system with p parallel processors, with the algorithm at stage i, these steps may be

executed in parallel as follows: We distribute the matrix A(i) equally between processors on a column basis

such that the first processor has the first block of (n-i)fp columns, the second, the corresponding second

(n-i)/p columns, and so on. Then given that each has the appropriate Householder vector w, each processor

can complete step 1 in parallel on its portion of the columns. The second step needs the matrix B of which

each processor has an equal portion following the first step. However each processor can compute its contrib­

ution to the vector c. Following that, we require a barrier synchronization between all, and the sum of all

components to determine c. Thus step two, is simply the parallel implementation of n-l parallel dot products.

Lastly the third step is again performed in parallel, with each processor updating its columns of A(i + I) with

a rank one matrix, c *w(t). Following the last step, the next Householder vector is computed by the

www.manaraa.com

18

processor holding the i + I th column, (always the first processor), and is broadcast to the remaining

processors for beginning the next reduction stage.

Load balancing and efficient data movement is achieved by always segmenting the columns evenly

between processors. It may be seen that the locally updated columns from the preceding stage can be used

immediately for the next stage. At most one column from the computational right neighbor may be required.

This minimization of data movement is essential, as the computational operation count for each stage is only

of the order of (n-I)**2. Synchronization is again required for these last vector transfers.

A Fortran version of this parallel algorithm was written and bench marked on the lCAP system. Synchro­

nization and data transfers were implemented using the shared bulk memories described previously. For

systems of order 800*800 and larger, the efficiency was slightly above 80% for 6 processors (see Fig. 4); this

performance is expected to improve on going to larger matrices.

6

2 4

NUMBER OF PROCESSORS

IDEAL
OBSERVED

6

Figure 4: Householder reduction; (800 * 800 matrix).

Extending the algorithm to problem sizes that are greater than "local memory has not as yet been

explored. However the following comments may be made. If the problem size n, is such that n*n!p fits in

local memory, then as emphasized previously, only one boundary column at most needs to be transferred

bctween adjacent processors at each reduction cycle. If local memory is insufficient, then at the beginning of

the algorithm, it will be necessary to write out block columns to make room for new block columns to be

updated during each cycle. However the extra penalty in data movement is offset to a large degree, by the

much larger parallel computational grain size between such transfers, and should not degrade the perform-

www.manaraa.com

19

ance significantly. Furthermore, as the reduction proceeds to a certain point, the remainder of the reduction

becomes entirely in core again, with all the advantages of small data transfers just described. Thus the overall

parallel strategy seems to be well adapted to problems of any size beyond some threshold magnitude.

Although the computation of the full transformation matrix was not included in the algorithm described

above, the calculation of its transpose can be incorporated in a similarly efficient parallel manner. That is, we

parallelize again on a column basis; at any given stage i, the update to this matrix is H(i + I) " T , where T is

the accumulated product of previous Householder transformations. The segmentation of T, and the boundary

column data movement between adjacent processors, follows the identical strategy as the matrix A that we

are reducing.

Lastly it should be mentioned that a simple QR factorization of a general matrix as contrasted with the

more complex Householder reduction described above, can be performed with exactly the same strategy used

here. Indeed, the absence of a right application of a Householder transformation removes one synchroniza­

tion that is needed in the latter. Initial measurements of the parallel QR factorization performed in this

manner, indicate almost linear speedup for similarly large sysyems.

2) Block LU Decomposition:

The parallel factorization of a system of equations is done on a block by block basis, but the algorithm

is identical to the familiar element by element approach. The operation count is slightly higher in this for­

mulation, (approximately 2% for a 500"500 system), but the execution rate is much higher in block form as

each operation now consists of matrix multiplications which are ideally suited to pipelined architectures.

Indeed we find that on the FPS-x64 computers the sequential algorithm of choice is the block form.

The important characteristic of this algorithm is that it allows processors to dynamically schedule tasks,

without undue considerations of communication that arise in static scheduling of tasks. This attribute

enhances the load balancing of the system, and allows processors of differing computational power to work

cohesively on the same problem. The essential operation in permitting dynamic job assignment, is the lock

mechanism which allows mutual exclusion in critical sections. This is implemented on the leAP system with

the use of shared memory.

Parallelism in block LU factorization is readily apparent and well known. Thus, once any diagonal

block has been inverted, all blocks immediately below this block column may be updated to L blocks in

parallel. Similarly once an L block has been computed, all blocks along the appropriate block column may

be updated in parallel. The only subtlety arises in devising the order in which to process these tasks.

In this regard, the essential feature is to eliminate as much as possible any bottlenecks that arise from

data dependencies between updates to blocks. Thus we schedule the update of any block required at a later

stage of the factorization, as early as possible; this minimizes the probability that processor(s) have to wait

for completion of updates on that block. In this regard we may write the block factorization algorithm for x

blocks as:

www.manaraa.com

do I k = I,x

if (k.eq.1) A(k,k) A(k,k)**(-I)

i = k

do 2 j = k + I,x

2 A(j,k) = A(j,k)*A(k,k)

do 3 i = k + I,x

do 3 j = k+ I,x

A(j,i) = A(j,i) - A(j,k)* A(k,i)

if(i.eq.j .and. j.eq.k + I) then

A(k+ I,k+ I) =A(k+ I,k+ 1)**(-1)

endif

3 continue

continue

20

Here symbol A(m,n) represents a block element in the mth block row and and nth block column. It may

be seen, that the only bottleneck is the computation of the first block inverse in position (I, I). Thereafter we

schedule tasks proceeding down the first column to compute the L factors. After that we schedule across

the rows starting at the top and working downwards. In addition, the very first job going across the columns

following its update is inverted immediately, so that it is ready as soon as possible for the next sweep. The

block elements are stored in block contiguous form on bulk memory, and are read and restored to this

memory per task. As stressed previously, these tasks are allocated to processors on a self scheduled basis.

This is achieved by stoling in shared memory a three word counter whose elements are the current indices in

the algorithm described above. This 3 element array is accessed in mutual exclusion by the processors, who

copy the indices corresponding to the present task into memory, and update the shared memory values

according to the rules imbedded in the algorithm. They then release the lock on this critical section for other

processors to access. In this manner load balancing is achieved dynamically. It is also worth stressing that the

programming of this method is very simple compared to that involved in static allocation schemes.

To make the algorithm robust, it is only necessary to ensure that a processor about to update a given

block, be able to ascertain whether that block and any other blocks required, are updated to the appropriate

level before proceeding. This is accomplished by storing in shared bulk memory a status matrix, that has a

one to one correspondence with the block data matrix. Any block that has been updated to level k (see

algorithm), requires that it have its corresponding status set to value k. In this manner a processor on sched­

uling a task first checks the status of the blocks required before proceeding, (and waits if they are not ready).

The forward solution and back substitution were parallelized in a manner entirely analogous to the

factorization. Indeed, the forward solution phase is begun while the last processors are completing the

factorization stages, as the upper left portion of the LU blocks are complete. The block backward solve

however has a sequential initial job, (the solve for the lowest (n,n) block), before the other parallel tasks can

proceed.

This algorithm was coded in Fortran for the leAP system with results similar to those obtained for the

Householder reduction; the efficiency was about 85% using 6 processors for problems of size 800 • 800,

www.manaraa.com

21

(Fig. 5). There is no penalty at all for problems that would normally be out of core, (as long as it fits on the

bulk memory), since the computation is done on a block basis.

6

4

NUMBER OF PROCESSORS

IDEAL
OBSERVED

Figure 5: Self-scheduled LU factorization; (800 • 800 matrix).

3) Two-Dimensional Fast Fourier Trallsform :

A 2-D FFT can be broken up into a series of one dimensional FFTs (I-D FFT) of length NY (column­

wisc), followed by a series of 1-0 FFTs of length NX (row-wise). The one dimensional FFTs may be parti­

tioned bctween processors in an efficient and load balanced manner. It is the implicit matrix transposc

between column and row FFTs that introduces communications overhead in the total calculations. This

transpose can be most easily performed by writing the matrix in blocked form; the row-wise FFT can be

performed by reading the blocked data by rows, and then by rcplacing the blocks with the transformed

values. The blocked data is read back by columns and a similar operation is performed on them. Details of

this method are given in Ref. 8.

The above mcthod. employing global shared memory was used to produce results shown in Figure 6.

Specifically, for a 512 by 512 case the efficiency reached 90% of ideal speedup for a single 2-D FFT; (a

problem of size 5l2x5l2 is very typical in two-dimensional simulations, and in the absence of symmetries.

requires storing matrices of size 512x512 for each of the unknowns in the equations that are being solved). It

is observed that the speedup is less for smaller matrices as the computation time becomes small, whereas the

transmission time decreases at a slower rate. Although not shown here, the results for the same problem "ith

www.manaraa.com

22

data transfer through the host had significantly less speedup (in fact almost no improvement in elapsed

time was observed with additional AP's).

2

NUMBER
4

OF PROCESSORS

IDEAL
512 X 512
256 X 256

Figure 6: 2-Dimensional Fast Fourier Transform.

4) Preconditioned Conj1lgate Gradient Methods:

The use of finite elements or implicit finite difference schemes to analyze problems requires the solution

of large, sparse systems of linear equations. In the finite element field, it is customary to use direct methods

such as Cholesky decomposition, or LU factorization to solve such systems of equations. This is a very

difficult method to implement in parallel, (the approach described above for dense matrices, is much less

efficient for sparse matrices), and also uses large amounts of storage because the LU factors are much more

populated than the original matrix. Instead of using direct methods, we have chosen to work with conjugate

gradient methods because they are much more amenable to parallel processing, and have the advantage over

direct methods in that they preserve the sparsity of the matrix.

The method of conjugate gradients (CG), works by successively refining an initial guess until the sol­

ution is achieved, (Ref 9). For a symmetric, positive definite matrix of size NxN, CG reaches the solution in

Ht most N steps in exact arithmetic; it is thus different from other iterative methods and can be considered as

a direct method. When used as such, it is much more expensive than Cholesky factorization for dense

matrices; however, for large, sparse matrices it is competitive in operation count and requires much less

storagc. The use of preconditioning, (Rcf. 10), can greatly reduce the number of iterations required for CG

www.manaraa.com

23

to converge to a satisfactory answer, and the method then has an advantage over direct methods in both

storage and operation counts. Incomplete Cholesky preconditioning, is generally regarded as the the most

effective preconditioner for symmetric, positive definite matrices, but it is also very difficult to implement in

parallel. We have therefore experimented with two different kinds of preconditioners that are more amenable

to parallelism, and discuss below the implementation of these two approaches on the ICAP system.

a) Diagonal Preconditioning: This is the simplest form of preconditioning, where the inverse of the

diagonal of a matrix is used as an approximate inverse of the matrix. For many problems, this simple

approach can often reduce the overall iterations by a factor of two or three, at very little additional expense

per iteration ; it is also readily implemented in parallel. The major computational steps of the conjugate

gradient mcthod consist of a sparse matrix-vector multiplication, scalar products of vectors, and the addition

of a vector to scalar multiples of another. These steps are carried out using the globally shared memory to

pass data between processors.

This method has been implemented on leAP (Ref. 11), and the results are shown in Fig. 7. One

interesting result is that it is possible to obtain efficiencies greater than 100%. The reason for this is that

when the problem was solved on a single processor, it was too large to fit into core, and hence required

transmitting large amounts of data to and from the bulk memory at each iteration. When the problem was

divided among processors, it could be executed in core, thus redUCing data transmission with the bulk

memory. This example illustrates that parallel processing can benefit both from additional processors and

additional memory.

2

NUMBER OF PROCESSORS

IDEAL
5176 X 517
3790 X 379

Figure 7: Conjugate gradients with diagonal preconditioning.

www.manaraa.com

24

b) Element by Element Preconditioning: This approach was originally proposed as a means of reducing

the costs associated with the solution of large, transient heat conduction problems. It was later combined

with an iterative scheme where the element by element factorization supplied the approximate inverse for
preconditioning, (Ref (2).

The essential concept used in this approach, is that an approximate inverse for the global stiffness matrix

can be obtained from an expression that contains the products of the inverses of the individual stiffness

matrices. In order to preserve symmetry and positive definiteness, it is necessary to perform a two pass

decomposition to get an approximate inverse; details are given in Ref. 12.

..-
"

"

2

2

NUMBER OF PROCESSORS

IDEAL
576 ELEWE T
960 ELEIIENT

Figure 8: Conjugate gradients with element-by-element preconditioning.

This method has heen implemented on lCAP, (Ref (3), and results shown in Fig. 8. The efficiency of this

method is among the highest of any of the methods considered so far, and furthermore, does not vary signif­

icantly with the size of the problem being solved. This appears to be a very promising method for implemen­

tation on a large number of processors.

5) Siml/lalion of Shallow Waler Behavior:

This application is presented as an example of an explicit finite difference method using both the ring and

master-slave configurations. We are presently engaged in studying. (in collaboration with the Woods Hole

Occanographic Institute), the behavior of a body of shallow water subjected to wind and tidal forces . The

www.manaraa.com

25

problem is formulated in terms of coupled, nonlinear partial differential equations, with the boundary condi­

tions specified along the coast line and at the inlets and outlets.

6

-.-
2

NUMBER OF PROCESSORS

IDEAL
HOST
B LK MEM .

Figure 9: Comparison of performance using two modes of data transfer.

To perform thcse calculations in parallel, each slave is given an equal portion of the grid to solve at each

time step. At the end of a time step, each processor must exchange boundary information with its neighbors.

When this information is exchanged using a master-slave configuration, there is a significant communication

ovcrhead _ and this sevcrely affects the speed-up that can be obtained using several processors, (shown in Fig.

9, bottom). Howevcr, when the same calculations arc carried out using locally shared memories for communi­

cations, the performance is vastly improved (Fig. 9, top). Details of this computation are discussed in Ref.

14.

These results suggest that explicit finite difference schemes may be successfully implemented in parallel ,

using a nearest neighbor ring architecture. Multiple, locally shared memories permit simultaneous inter­

processor communication.

VII. Concluding Remarks:

The ICAP system seems to be well adapted to the efficient implementation of a large and diverse collection

of scientific and engineering problems. The extensions to the system, discussed in a previous section, would

www.manaraa.com

26

seem to make this parallel processing system a truly general purpose machine. Future experiments will be

needed to verify this conclusion.

The need for algorithm design is critical for parallel processing systems, and we are interested in devel­

oping algorithms that map efficiently on to the topology of lCAP-l and lCAP-2. To this end we have estab­

lished joint efforts with a number of centers (Yale, Cornell, and RPI), in developing software for such

algorithms as matrix diagonalizations, solution of systems of algebraic equations, and FFT's. It must be

mentioned that a similar system has been developed at the IBM Scientific Center at Rome, Italy. Close coop­

eration between our two groups is expected to further our understanding of parallel applications and algo­

rithms.

References

I. Virtual Machine/System Product System Programmer's Guide, Third Edition (Publication No.

SCI9-6203-2), International Business Machines Corp. (August, 1983).

2. FPS-164 Operating System Manual, Vols. 1-3 (Publication No. 860-7491-000B), Floating Point Systems,

Inc. (January, 1983).

3. Shared Bulk Memory System Interface Software Manual, Version I, August 1985, Publication of Scientific

Computing Associates, New Haven, Connecticut.

4. E. Clementi, G. Corongiu, J. H. Detrich, H. Khanmohammadbaigi, S. Chin, L. Domingo, A. Laaksonen

and H. L. Nguyen, "Parallelism in Computational Chemistry: Applications in Quantum and Statistical

Mechanics", in Structure and Motion: Membranes, Nucleic Acids and Proteins, E. Clementi, G. Corongiu,

M. H. Sarma and R. H. Sarma, Eds., Adenine Press, Guilderland, N.Y., 1984.

5. D. Logan, "The Parallel Eigenvalue Problem on the lCAP Multiprocessor System ", KGNIOO, IBM

Kingston,1986.

6. Proceedings of the Second SIAM Conference on Parallel Processing for Scientific Computing, held at

Norfolk, Virginia, Nov 18-21, 1985

7. G. Golub and C. F. VanLoan, Matrix Computations, Johns Hopkins University Press, Baltimore,

Maryland, 1983.

8. Z. Christidis, V. Sonnad and D. Logan, "Parallel Implementation of a 2-D Fast Fourier Transform on a

Loosely Coupled Array of Processors", KGN68, IBM Kingston, NY,1986.

9. M. Hestenes and E. Stiefel, "Method of Conjugate Gradients for Solving Linear Systems", Journal of

Research of the National Bureau of Standards, V49, December 1952.

10. J. A. Meijrink and H. A. Van der Vorst, " An Iterative Solution Method for Linear Systems of which the

Coefficient Matrix is a Symmetric M Matrix", Mathematics of Computation, V31, 1977.

II. R. Donati and V. Sonnad, "Coupling a Finite Element Frontal Solver Code to a Parallel Conjugate Gra­

dient Solver", KGN 98, IBM Kingston, NY, 1986.

12. J. Winget and T. Hughes, " Solution algorithm for Nonlinear Transient Heat Conduction Analysis

Employing Element-by-Element Iterative Strategies", Computer Methods in Applied Mechanics and Engi­

neering, v52, 1985.

www.manaraa.com

27

13. R. King and V. Sonnad, "Implementation of an Element-by-Element Algorithm for the Finite Element

Method on a Loosely Coupled Array of Processors", RJ5272(54312) , IBM San Jose, 1986.

14. A. Capotondi, V. Sonnad and S. Chin, "Parallel Resolution of the Shallow Water Equations Using an

Explicit Finite Difference Algorithm", KGN57, IBM Kingston, 1986.

www.manaraa.com

A LOOK AT THE EVOLUTION OF MATHEMATICAL SOFTWARE
FOR DENSE MATRIX PROBLEMS OVER THE

I. Introduction

PAST FIFTEEN YEARS·

J. J. Dongarra and D. C. Sorensen

Mathematics and Computer Science Division
Argonne National Laboratory

9700 South Cass Avenue
Argonne, Dlinois 604394844

and

Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign

305 Talbot Laboratory
104 South Wright Street

Urbana, llIinois 61801-2932

In this paper we look at the evolution which has taken place in the design of mathematical software
for dense matrix problems. Our main emphasis is on algorithms for solving linear algebra problems
where the software we develop would reside in a library on high-performance computers.

2. A Look at EISPACK and UNPACK

Both EISPACK [8,6] and UNPACK [1] are based on a decomposition approach to numerical
linear algebra. The general idea is the following. Given a problem involving a matrix A , one factors or
decomposes A into a product of simple, well structured, matrices which can be easily manipulated to
solve the original problem. This divides the computational problem into two parts: first compute an
appropriate decomposition; then use it to solve the problem at hand.

EISPACK is a collection of routines that compute the eigenvalues and eigenvectors of matrices
and matrix systems. The algorithms in EISPACK are primarily based on Algol procedures developed in
the 1960's by nineteen different authors and published in the journal Nwnerische Mathematik. J .H. Wil­
kinson and C. Reinsch collected a number of these procedures, together with some background material,
in a volume entitled Linear Algebra in the Handbookfor Automatic Computation series[9).

In early 1970 a group of researchers from Argonne National Laboratory, the University of Texas,
and Stanford University proposed to the National Science Foundation a project to "explore the metho­
dology, costs, and resources required to produce, test and disseminate high-quality mathematical
software and to test, certify, disseminate, and support packages of mathematical software". The project
was to take the algorithms dealing with the eigenValue problem from the Wilkinson - Reinsch

• Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research. U.S.
Depanment of Energy. WldcrCootracts W-31-109-Eng-38. DE-AC05-840R21400.llId DE-FG02-85ER25001.

www.manaraa.com

30

Handbook; translate them to Fortran; and produce a ponable, robust, accurate, uniform, and well­
documented package. At the time, little thought was given to high-performance computers; the state of
the an in supercomputers was a CDC 7600. By May of 1972 the collection of Fortran routines called
EISP ACK was ready for public use.

A few years later there was a general feeling in the community that a unified package dealing with
the solution of linear equations was needed. UNPACK is a package of routines for solving variolls
kinds of linear systems of equations. The subroutines in the package are not the result of a translation
but of a rewrite of many of the algorithms to conform to a cenain style.

UNPACK uses column-oriented algorithms to preserve locality of reference. Column orientation
means that the UNPACK codes always reference arrays down columns, not across rows. This approach
works because Fortran stores arrays in column order. Thus, as one proceeds down a column of an lmay.
references proceed sequentially in memory. On the other hand, as one proceeds sequentially across a
row, references jumps across physical memory. The length of the jump being proponional to the length
of a column. The effects of column orientation are dramatic; on systems with vinual or cache memories,
the UNPACK codes will significantly outperform codes that are not column oriented.

An imponant factor affecting the efficiency of UNPACK is the use of the Basic Linear Algebra
Subprograms (BLAS)[7]. This set of subprograms performs basic operations from linear algebra, such
as computing an inner product or adding a multiple of one vector to another. In UNPACK the great
majority of floating-point calculations are done within the BLAS.

One difficulty with using the BLAS, however, is that they operate only on vectors. However, the
algorithms as implemented tend to do more data movement than is necessary. As a result, the perfor­
mance of the routines in UNPACK suffers on high-performance computers where data movement is as
costly as floating-point operations. To illustrate the point, we examine in Table 1 the peak theoretical
performance of various high-performance computers available today.

www.manaraa.com

31

Table 1
Peak Performance

Machine Cycle Number Peak
time, Procs. Perf.,
nsec MFWPS

CONVEXC-1 100 1 20
Alliant FX/8 170 8 44
SCS-40 45 44
FPS 264 38 54
Amdah1500 7.5 133
CRAY-l 12.5 160
CRAYX-MP-1 9.5 210
IBM 3090NF-200 '18.5 2 216
Amdahl1100 7.5 1 267
NECSX-1E 7 325
CDC CYBER 205 20 1 400
CRAYX-MP-2 9.5 2 420
IBM 3090NF-400 18.5 4 432
Amdah11200 7.5 533
NECSX-1 7 650
CRAYX-MP-4 9.5 4 840
Hitachi S-81O/20 14 1 840
NEC SX-2 6 1 1300
CRAY-2 4.1 4 2000

By peak theoretical performance we mean that the manufactures guarantees that programs will not
exceed these rates, sort of a speed of light for a given computer.

In practice, with UNPACK routines SGEFA and SGESL (used to solve dense systems or cqua·
tions) we observe the following[31:

www.manaraa.com

32

Table 2
UNPACK Benclunark

Solving a 100 x 100 Matrix Problem

Machine Peak Actual
Perfonnance, Perfonnance,

MFLOPS MFLOPS

CONVEXC-l 20 2.9
Alliant FX/8 44 7.6 (8 proc)
SCS-40 44 7.3
FPS 264 54 5.6
Amdahl 500 133 14
CRAY-l 160 12
CRAYX-MP-l 210 24
IBM 3090NF-200 216 12 (1 proc)
Amdahl 1100 267 16
NEC SX-IE 325 35
CDC CYBER 205 400 17
CRAYX-MP-2 420 24 (1 proc)
IBM 3090NF-400 432 12 (1 proc)
Amdahl1200 533 18
NECSX-l 650 39
CRAYX-MP-4 840 24 (1 proc)
Hitachi S-81O/20 840 17
NECSX-2 1300 46
CRAY-2 2000 15 (1 proc)

At one time, a programmer had to go out of his way to code a matrix routine that would not r\lll at
nearly top efficiency on any system with an optimizing compiler. Owing to the proliferation of exotic'
computer architectures, this situation is no longer true. However, by using one of the new features of
many modern computers namely, hierarchical memory organization one can gain high perfonnance by

some algorithmic ingenuity.

3. Restructuring Algorithms

Typically a hierarchical memory structure involves a sequence of computer memories ranging
from a small, but very fast memory at the bottom to a large, but slow memory at the top, Since a p.mic­
ular memory in the hierarchy (call it M) is not as big as the memory at the next level (M'), only part of
the infonnation in M' will be contained in M, If a reference is made to infonnation that is in M, then it

www.manaraa.com

33

is retrieved as usual. However, if the infonuation is not in M, then it must be retrieved from M' , with a
loss of time. To avoid repeated retrieval, infonuation is transferred from M' to M in blocks, the suppo­
sition being that if a program references an item in a particular block, the next reference is likely to be
in the same block. Programs having this property are said to have locality of reference. Typically, there
is a certain startup time associated with getting the first memory reference in a block. This startup is
amortized over the block move.

If we examine the algorithm used in UNPACK and look at how the data are referenced, we see
that at each step of the factorization process there are vector operations that modify a full submatrix of
data. This update causes a block of data to be read, updated, and written back to central memory. The

number of floating point operations is ';n 3 and the number of data references, both loads and stores, is

~n3. Thus, for every add/multiply pair we must perfonu a load and store of the elements, unfor­

tunately obtaining no reuse of data. Even though the operations are fully vectorized, there is a signifi­
cant bottleneck in data movement, resulting in poor perfonuance (see Table 2). On vector computers
this translates into 2 vector operations and 3 vector-memory references. Usually limiting the perfor­
mance to well below peak rates. To achieve high-performance rates, this operation to memory refer­
ence rate must be higher.

It is possible to express the algorithms in tenus of matrix-vector operations. These operations have
the benefit that they can reuse data and achieve a higher rate of execution than the vector counterpart.
In fact, the number of floating-point operations remains the same; only the data reference pattern is
changed. This change results in a operation to memory reference rate on vector computers of effectively
2 vector operations and 1 vector-memory reference.

When the algorithm is recast to minimize memory traffic, the results can be impressive. In [2] the
algorithm for solving dense systems of linear equations was recast in tenus of a matrix-vector multiply,
which has the desired effect (see Table 3).

www.manaraa.com

34

Table 3.
Comparison with Matrix-Vector Operations

Solving a 100 x 100 Matrix Problem

Machine Perfonnance Perfonnance
Before After

MFLOPS MFLOPS

CONVEXC-I 2.9 5
Alliant FXl8 7.6 (8 procs) 10
SCS-40 7.3 13
FPS 264 5.6 24
CRAY-1 12 38
CRAYX-MP-l 24 57
IDM 3090NF-200 12 24(1 proc)
Amdahl 1100 16 48
NEC SX-IE 35 71
CDC CYBER 205 17 24
CRAYX-MP-2 24 (1 proc) 48 (2 procs)
IDM 3090NF-400 12 24(1 proc)
Amdahl 1200 18 52
NECSX-1 39 74
CRAYX-MP-4 24 (I proc) 74 (4 procs)
Hitachi S-81O/20 17 48
NECSX-2 46 100
CRAY-2 14 28 (1 proc)

The same effect can be reallized for many of the algorithms dealing with other matrix problems,

such as eigenvalue problems[4].

www.manaraa.com

35

Table 4 shows the comparison between the original EISPACK fonnulation and the restructured matrix­
vector algorithms.

Table 4
Speedup of Matrix-Vector Versions over the EISPACK Routines

order
Routine 50 100 Machine

ELMHES 1.5 2.2 CRAYI
ORTHES (1) 2.0 1.9 CRAYI
ORTHES (2) 2.5 2.5 CRAYI

ELMBAK 2.2 2.6 CRAYI
ORTBAK(l) 2.8 2.5 CRAYI
ORTBAK(2) 3.6 3.3 CRAYI

TREDI 1.5 1.5 CRAYX-MP-l
TRBAKI 4.2 3.7 CRAYX-MP-l
TRED2 1.6 1.6 CRAYX-MP-l

SVDno/v 1.7 2.0 Hitachi S-81O/20
SVDw/v 1.6 1.7 Hitachi S-81O/20
REDUC 1.8 2.2 Fujitsu VP-2OO
REBAK 4.4 5.8 Fujitsu VP-2oo

All the data represent Fortran implementations; no attempt was make to explicitly exploit the vec­
tor hardware through assembly language.

If we look at the current generation of high-perfonnance computers on the market today, we see
even more emphasis on memory hierarchies. Machines such as the CRAY-2, Alliant FX/8, and lLlM
3090NF all have an additional level of memory between the main memory and the vector registers of
the processor. This memory, referred to as cache or local memory is relatively small (on the order of
16K words) and may not be under the control of the programmer.

Nevertheless, the issues are the same: to come close to gaining peak perfonnance, one must optim­
ize the use of this level of memory (i.e. retain information as long as possible before the next access to
main memory) obtaining as much reuse as possible. In the case of matrix factorization this means that
instead of matrix-vector operations, one must perfonn matrix-matrix operations[5]. Here we can
achieve a high operation to memory reference rate. In the case of matrix-matrix operations we get a
surface to volume effect, 0 (mn 2) operations to 0 (mn) memory references. An effort is currently under
way to recast the algorithms in tenns of these Level 3 BLAS, matrix-matrix operations. This involves

www.manaraa.com

36

modifying the algorithm to perform more than one step of the decomposition process at a given loop
iteration.

4. Conclusions

In an attempt to easily transport algorithms to a wide variety of architectures and to achieve high
performance, we are isolating the computationally intense parts in high-level modules. When the archi­
tecture changes, we deal with the modules separately, rewriting them in terms of machine-specific
operations; however, the basic algorithm remains the same. By doing so we can achieve the goal of a
high operation to memory reference ratio.

1. 1. Dongarra, 1. Bunch, C. Moler, and G. Stewart, UNPACK Users' Guide, SIAM Pub, Philadel­
pha (1976).

2. 1. Dongarra and Stanley C. Eisenstat, "Squeezing the Most out of an Algorithm in Cray Fortran,"
ACM Trans. Math. Software 10,3, pp. 221-230 (1984).

3. 1.1. Dongarra, "Performance of Various Computers Using Standard Linear Equations Software in
a Fortran Environment," Argonne National Laboratory MCS-TM-23 (October 1986).

4. 1.1. Dongarra, L. Kaufman, and S. Hammarling, "Squeezing the Most Out of High Performance
Computers for Finding the Eigenvalues," Linear Algebra and Its Applications 77, pp. 113-136
(1986).

5. J.J. Dongarra and D.C. Sorensen, "Linear Algebra on High-Performance Computers," pp. 3-32 in
Proceedings Parallel Computing 85, ed. U. Schendel, North Holland (1986).

6. B.S. Garbow, 1.M. Boyle, 1.1. Dongarra, and C.B. Moler, Matrix Eigensystem Routines -
EISPACK Guide Extension, 1977.

7. C. Lawson, R. Hanson, D. Kincaid, and and F. Krogh, "Basic Linear Algebra Subprograms for
Fortran Usage," ACM Transactions on Mathematical Software, pp. 308-323 (1979).

8. B.T. Smith, I.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V. Klema, and C. Moler, Matrix
Eigensystem Routines - EISPACK Guide, Second Edition" 1976.

9. 1. Wilkinson and C. Reinsch, Handbook for Automatic Computation: Volume II - Linear Algebra,
Springer-Verlag, New York

www.manaraa.com

Abstract

A Graphical Approach to
Load Balancing and Sparse Matrix

Vedor Multiplication on the Hypercube
Geoffrey C. Fox t

California Institute of Technology
Pasadena, CA 91125

December 5, 1986

Presented at Minnesota Institute for Mathematics and Its
Applications Workshop November 6, 1986

We consider the implementation on a hypercube concurrent computer, of matrix vector
multiplication y=Ax where A is a large sparse matrix. A good decomposition is crucial for
the case when each column of A has on the average fewer non zero elements than there are
nodes in the hypercube. We review simulated annealing and neural network methods for gen­
erating a hypercube decomposition for this problem. We introduce a new graphical method,
orthogonal recursive bisection, which can be applied to general problems and is successful on
this test case. The performance of the concurrent computer depends strongly on any correla­
tions in the placement of non zero elements of A.

I: Introduction

We consider the solution of a very simple problem - namely matrix A times vector ,£

multiplication, i.e.

(I)

on a hypercube concurrent computer. We will see that this seemingly trivial problem is intel­
lectually challenging and exhibits the essential features of a wide class of network and time
synchronized simulations on the hypercube. The techniques developed apply to any distri­
buted memory coarse grain sized computer but here we will specialize to the hypercube topol­
ogy in the implementations and detailed discussion.

We wish to consider the case when A is very sparse. An example we will often use is the
sparse matrix coming from the simplest live point discretization of the Laplacian operator V~
in two or three dimensions. Then for a I OOOx 1000 regular mesh, ,£ and l have 106 elements.
A has 106 rows and columns but at most 4 nonzero elements in each row or column. In this
example A is symmetric although the techniques that we discuss will not depend on this spe­
cial feature. We will let M be the length of the vectors ,£ and l and suppose that each row or
column of A has an average of L nonzero elements; i.e. the MxM matrix A has a total of ML
nonzero elements. Except for pathological cases the performance of a hypercube on (I)
depends on the average number of nonzero elements and not, say, or the maximum number in
anyone row or column. On the other hand we will see that the actual positioning of the

t Work 8upported in pert by DOE grant DE-FG03-85ER25009, Persona and Sy.tern Development
Foundations, and the office of the program manager of the Joint Tactical Fusion Office.

www.manaraa.com

38

nonzero elements of A, i.e. correlations between these positions, can be quite crucial in deter­
mining performance.

There are several approaches to the implementation of (I) on the hypercube; let us con­
sider one generally good and simple technique. We decompose the vectors ~ and t so that
each processor holds M / N elements of each vector. Here the hypercube of dimension d H has

(2)

processors or nodes. There are, of course, many (NeM/N) ways of decomposing M objects
over N nodes and in fact the key problem discussed in this paper will be finding which of the
many decompositions to choose. As there are so many possibilities, an exhaustive search is
impossible; we need to find ways of finding a good, but not necessarily the best, decomposi­
tion from a search that only samples over a few possible decompositions. The problem is NP
complete in the language of computer science.

Once one has chosen a decomposition, the concurrent algorithm is simple. Each node
stores both the nonzero values (iocations) of Aij and Ai' for all vector locations (values) j (Xi)
held in this node. The algorithm divides into two stages.

I: Transmit from node Q the value of Xi to node f3 where the index j is

associated with node Q, index i with node f3 and A'i is nonzero

II: Calculate within each node the summation (I).

(3-1)

(3-11)

II involves no communication and is completely load balanced. I is the communication
which needs to be minimized. Note that this communication overhead is a distinctive conse­
quence of the distributed memory architecture and if we are successful in reducing it, we are
showing the relevance of this architecture to this class of problems.

We would also note that the issues behind the steps (3-1), (3-11) are much more general
and important than the simple problem (I). Consider for instance a particle dynamics problem
where we wish to evolve in time a set of M particles. At anyone time, particle i is at position
!J. Define the matrix Aij to be non zero if and only if particles i and j interact with each
other; typically one would have

Aii '" 0 if and only if I!J - !:i I < R (4)

where R is the range of the force between the particles. Then the decomposition of this prob­
lem is very similar to that of (I); we wish to distribute particles i over the hypercube in such a
way that we minimize the number of nonzero matrix elements Aij that cross processor boun­
daries. In the problem (I), Aij is fixed whereas in the particle dynamics case, Aij changes as
the system evolves. The static decomposition and dynamic load balancing problems are essen­
tially identical. In fact, any time stepped simulation can be reduced to the study of a, in gen­
eral, sparse matrix Aij specifying the interconnection between elements i and j in the simula­
tion. A nontrivial complication for a general simulation is the presence of elements i of vary­
ing nature i.e. different computational complexity; this complicates but does not seem to
change the basic issues. We will review the general case in detail elsewhere (Ref. 1) but will
for the rest of the paper concentrate on the specific problem (l).

In section II, we define the algorithm (3) more precisely and calculate the performance
of the hypercube for a given decomposition. In sections III and IV we cover three decomposi­
tion techniques; section III discusses simulated annealing2•3 and neural nets4 and IV a new

www.manaraa.com

39

graphical method. In the final section, we discuss tests of the new method and suggest further
research issues.

II Calculation and Communication Times on the Hypercube

In this section, we assume that we have created a map on the hypercube of

vector element i -+ processor Pi (5)

and analyze the behavior of the hypercube on the problem (I) for the decomposition (5). Let
take use as usual the notation

t e"""": communication time between adjacent nodes on the hypercube

for a 64 bit quantity

(6a)

tflop: typical time to add or multiply two 64 bit(double precision) numbers. (6b)

We will assume that equation (1) is to be calculated in double precision; the analysis is
essentially identical if this is not true. One often uses the ratio given by:

(6c)

Let us now consider first the calculation stage (3-II). Equation (I) involves a total of
M(2L-I) floating point operations; so the sequential execution time is

T,eq = M(2L-I)tflop (7-Seq)

The stage (3-11) is under assumptions explained below load balanced and so for the
hypercube implementation

(7-II)

To be precise, stage (3-II) is only exactly load balanced for an assignment of equal
number of M / N elements per processor when L, the number of non zero clements per row in
Aij is independent of i. In many cases, L is in fact essentially constant and so (7-1I) is accu­
rate. In general, one needs to allow L to vary and the load balanced decomposition to allow
different number of elements in each node. This corresponds to the case mentioned in the
introduction where the computational complexity Ci depends on the element i. The tech­
niques described in sections III and IV can be extended to variable Ci and unless Ci takes
extreme values, we do not believe it affects the essential issues. Thus, in this paper, we will
only consider the case when Ci is a constant (2L -I) independent of i .

The communication cost for stage (3-1) depends greatly on circumstances. For the exam­
ple discussed in the introduction when A comes from the discretization of the Laplacian in
two dimensions, one can use a simple domain decomposition of the type shown in figure I.
Now i labels the points in a simple two dimensional grid. Only for elements i on the edge of
the subdomain held in a particular processor is any communication necessary. Thus one finds
a communication time T[onc that is proportional to r ...; N / M times the calculational time T!{,..
given in (7-11). In the interesting limit M »N, calculation dominates communication for
machines like the Cal tech/ JPL hypercube for which the ratio T ~ 1.5 is not large compared to
unity. For such an A it is possible to group elements so that only little communication is
necessary. Now let us consider what would happen if we had not chosen such a sensible

www.manaraa.com

40

decomposition or if the non zero elements in the matrix A did not cluster in a way that
allowed this type of decomposition.

For a typical non-optimized decomposition one must expect that in the sum 2: AiiXi'
i

L vol ...

the L interesting Xj will not be stored in Pi; the processor associated with element i. In fact,
each Xj only has a chance 1/ N of being found in Pi' On the hypercube the average communi-

cation distance is t log2N and so a typical non optimized decomposition will demand a total

communication time Tcomm of ~L log2N. In general, one would expect this communication

to be balanced and so the worst case scenario is

1 _ Tcomm _ M 1::..
Tc_ - N - N 2 10l}.JNtcomm (7-1)

The speedup on the hypercube, for this non optimized decomposition, is:

T.eq
S = 1 11 T,,,,,,, + Tc",",

N 2(2L-1)
- 10l}.JN Lr

(8)

for large N where TI dominates TIl. The performance (8) still represent substantial speed up
but it is poor compared to the form

(9)

for the decomposition given in figure 1. In this paper, we will be discussing ways of improv­
ing (8). We will devise general methods that generate the result (9) (or nearly it) for the simple
case of figure I but which generalize to more complicated matrices A .

We will first discuss the communication in more detail. As a first simplification, we note
that we will ignore any imbalance in communication and only discuss the total communication
time Tcomm summed over all transmitted vectors Xi' This approximation needs to be exam­
ined in more detail but we believe that it does not miss any essential issues.

Xi must be sent from node Pj to all nodes Pi for which Aii is nonzero; this is a list of up
to L distinct nodes to which Xi must be sent. This is a variant of the standard traveling sales­
man problem which can be solved more efficiently than the naive estimate (7-I). In appendix
A, we detail the algorithm we used in our numerical tests. This does not give the best routing
but it is quite good and fast to generate. As we will see in sections IV, this change from L
separate trips to one coordinated trip reduces the estimate (7-1) by approximately a factor of 2
in the case L =4. One simple limit is the case when L is ~ N and here the maximum trip dis­
tance for Xi to visit its L associated nodes is N -1. This is the well known long range force
algorithm when all information is sent to all nodes. In this case, the speed up becomes

S-N/[I+ ~] 2L-I
(10)

which gets arbitrarily close to N as L increases and becomes large compared to N. The sim­
ple long range force problem corresponds to a full matrix A and L=M.

www.manaraa.com

41

We should also note that the concurrent algorithm described here and in section I is not
the only one possible. Another reasonable strategy is to form in each node the partial sums

E Aijxj and route these to the target node PI' As these partial sums, circulate through
jill

lame nod.,
the hypercube, those corresponding to the same element i are combined as they transit
through the same intermediate node. Good algorithms for this have been presented for full
matrix vector multiplication and other problems in Ref. 5 and studied by Furmanski6•

III Simulated Annealing

Simulated annealing is a powerful method for optimizing functions defined over complex
systems which has been introduced by Kirkpatrick and colleagues7• We have shown in a
series of papers2,3.8 how to apply it to load balancing on the hypercube for problems of the
type given in equation (1). This method is derived by mapping the complex system
represented by (1) into a physical system.

We consider each vector element i as a particle moving in space with N = 2dH distinct
positions. These particles interact with two types of forces2•3,8. These forces are represented
by a energy or objective function E which, therefore, has two terms. The first term
corresponds to a short range repulsive force between the particles and takes the form

(11)

where P runs over the N positions in the space. E CI is the total calculational complexity
i:Pi;;'P

for the concurrent algorithm in processor P. E 1 can be minimized in our case by always
ensuring that each position (processor) contains an equal number of particles and this con­
straint will either be exactly or approximately embodied in our methods.

The most interesting term in the energy function corresponds to an attractive force
between any two particles i,j that correspond to a non zero entry Alj in the matrix A. In fact

(12)

where Tcomm is the total communication time introduced in section II. VI is the total route
length involved in transmitting particle i from PI to all nodes Pi for which Ajl is nonzero.
The exact form of VI used here is given in appendix A. If the simple non optimal routing of
(7-1) is used, VI just becomes a sum of two particle potentials Vi.> where,

VI = E [Vi.>·=distance from PI to Pj in hypercube]
j:Aji "" 0

(13)

the individual V ij are just linear (in hypercubic space!) potentials. Vlj is clearly attractive
and it is minimized when i and j are at the same position (i.e. in the same processor).
Although the form VI in (13) is not precise, it does give one a reliable intuition as to the
nature of the interactions between the particles. In this physics analogy, we need to find the
ground state of the system of particles. Translating this back to the original complex system
(1), this ground state then corresponds to the required optimal decomposition of elements i
onto the hypercube.

There are some well established techniques for finding the equilibrium state of physical

www.manaraa.com

42

system which may be applied to the physics analogy; this is the method of simulated anneal­
ing. We will describe the Metropolis method which is one of the most powerful and was used
in Ref. 3 for problems similar to those discussed here. We assume E 1 is minimized by keeping
equal number of elements in each node.
Now define

(14)

where T is a temperature. The attractive potential energy E2 and hence f depend on the par­
ticular configuration (map) of particles (elements) i into positions (processors) Pi. Consider
anyone such map.

M: i-+Pi with energy E2

Generate from this a new map

M': i-+p;'with energy E2

where M' is gotten by interchanging any two particles i and j i.e.

Pi = Pj

Pi = Pi

Let Sf = j'-f = (E2-E2)/MT

(i5a)

(i5b)

(16)

(17)

Note that Sf is easily calculable as most of the terms Vi in E2 and E2 are identical. At most
2L+2 terms are different between E2 and E2 corresponding to Vi, Vj and any Vk such that i
or j are involved in its calculation i.e. such that particle k interacts with i and j. The Metrop­
olis algorithm is defined by:

i) if 6f ~O, replace configuration M by M' (18)

ii) if 6f >0, replace M by M' with probability exp[- Sf].

when the temperature T is large, 6f is small and essentially all changes are accepted; as the
system is cooled and T is reduced, one tends to accept only changes that reduce the energy
and so improve the decomposition. For the parameter L=4, we found that T=I allowed one
to sample many configurations and lind a good starting point. Then one could lower T to 0.25
or 0.5 and converge to an approximate ground state. We will use some the results from this
method in section V.

We have recently found that the neural network method based on the work of Hopfield
and Tank9 is often superior to simulated annealing. This new method is quite similar to
annealing and can be viewed as a deterministic "equa60ns of motion" method of finding the
ground state of the analog physical system introduced above.

We have only specified the potential energy above and the physical system can be com­
pleted by many different kinetic terms. Further such systems are typically conservative and
evolving their equations of motion would not lead to the ground state but rather a constant
energy orbit. We use biological intuition to suggest an appropriate set of equations which
have an effective frictional term to cause the system to evolve to minimum of the potential

www.manaraa.com

43

energy E = E 1 + const. E2• Different choices of equations will lead to different speeds of
convergence and different probabilities of reaching the true rather than a local minima.

We first introduce "neural variables" associating dB = 108;JN of them with each point i.
Write the processor associated with i as:

dB-1
Pi = ~ 2c[1+S.(i)]/2 (19)

0;;;;0

where the neurons (spins) Sc (i) take the values ± I. Clearly, Sc (i) = + I implies that the asso­
ciated processor Pi is "up" in the c til direction in the hypercube. The replacement of Pi by the
set {So (i)} is a useful step even the simulated annealing approach. We will find iteratively the
values So(i) (for aU i),S ,(i) ... SdB-I(i). This leads to log2N stages, at each of which we only
have two choices; this is faster than Eq. (16) with one stage consisting of N choices for Pi'

Expressing E in terms of S. (i) we can use the mean field approximation to calculate the
statistical physics particular function Z = 'Eexp(-E IT) associated with the spin system
{Sc (i)}. This leads to a Hamiltonian

H = f + ~{U.(i)Sc(i) -In cosh U.(i)}
c,'

(20)

with mean field equations

B:c~) = Sc(i) - tanh u.(i) = 0 (21)

BH BE
BS.(i) = u. + TBSc(i) = 0

to find the stationary points in H. S. (i) and u. (i) can be considered conjugate positions and
momenta in a Hamiltonian formalism.

As discussed in Refs. [9] and [4]. there are various methods of solving (21) which have
different performance or different problems. We introduced in Ref. [4]. the bold network
which was both fast and robust for hypercube decompositions. A key advantage of neural
networks is that is is rather straightforward to estimate their speed of convergence. The total
time taken to solve (21) is

(22)

where the value of c('1) depends on the required goodness of convergence; Ihis is the time
taken to reach a value of E that is a factor (1 +'1) times its minimum value. A value of '1 ~ 0.2
would be a typical goal. In equation (22), d, is the dimension of the underlying system. A

general definition of this is given in Ref. [2]. The factor M'ld, represents the maximum dis­
tance between points in the graph Aij . As discussed in Ref. [4]. there is some reason to
believe that one can improve (22) to:

Tnowal net = c('1)M In M (23)

Simulating annealing can be in principle always get a solution that is arbitrary near the
true maximum. However this is at a cost - in terms of time spent annealing - that is arbitrarily
great. Neural nets seem to give generally good results in a time. given in equations (22) and
(23), that is reasonable and more importantly predictable.

www.manaraa.com

IV ORB: Orthogonal Recursive Bisection
IV A The Graphical Distance d (i ,j)

44

One problem with the methods of section III is that they are time consuming especially
when M, the number of elements, is large; the statistical nature of the procedure leads to slow
convergence to equilibrium for simulated annealing. Neural networks are faster but the work
needed to generate a decomposition grows with the size of the systems to a power greater than
one. Here we present a different technique that will not produce such a good decomposition
but one which in some cases, is quite good. Further the method is deterministic and requires
modest calculation which is linear in the system size.

We consider Aij as defining a graph with nodal points labeled by i and non zero entries
in Ai; specifying connected nodal points. The connections are bidirectional if A is symmetric
but in general are directed. We will use a physics notation and let Ii> denote an arbitrary
nodal point in the graph. A is an operator that maps links Ii> to a set (I j >). Define the dis­
tance d (i J) between Ii> and a general point I j > by

Ii> = (A+AT)d(i·j)li>
min

(24)

where m in the above equation should be read as "U> is included in the set of points gotten by
acting A+AT (AT is transpose of A) on Ii>." (24) indicates that one chooses d(i,j) to be the
smallest integer power of A + A T for which Ii> appears in list of generated points.

The above definition of d (i,j) can be easily interpreted for the case when A
corresponds to the discretized Laplacian on a two dimensional mesh. As illustrated in figure
2, d (i,j) corresponds to the two dimensional "stair-case" rather than the conventional direct
distance.

We wish to fmd a way of decomposing the graph (set of elements of i) which gives rea­
sonable results for the two dimensional space (i.e. results competitive with figure I) but only
uses information contained in A and not the "secret" information as to the existence of an
underlying space. Roughly this means we only used the distance d (i,j) defined in (24) rather
than the complete structure of the underlying metric space. We will use a recursive method
that has been applied to metric based decompositions before but not as far as we know to gen­
eral graphs.

The basic idea is to divide the graph into N subgraphs such that nearby points (i.e.
points Ii>, Ij> for which d(i,j) is small) are in the same subgraph. This procedure does not
precisely implement the goals defined in section II, the minimization of T,omm' but is is quali­
tatively similar. We expect that if we can find decompositions that minimize d (i ,J) when
Ii>, Ii> are in same processor, then these are also be near the best in the sense of section II.

We will frrst describe the ring algorithm which is not optimal but illustrates some of the
basic ideas.

IVB The Ring Algorithm

Given a graph as defined above, let I iB> be a random initial nodal point. Associate
with each point Ii> the distance

(25a)

Let jut be the label of one of the nodal points that maximizes dBU). Figure 3 illustrates
this for the graph corresponding to a l6x 16 two dimensional mesh. j ezt is one of the four

www.manaraa.com

45

corners of the domain. The corner chosen will depend on particular point liB> picked.

Now form the ring distance

(25b)

This is the staircase distance measured from the corner I}"I>' We now sort the sct {I}>} on
the basis of the function driJlfJ (j) and divide {IJ>} into N equal subsets based on this order­
ing. This divides the graph up into rings centered on ijUI>' This is also illustrated in Figure
3. We obtain a hypercube decomposition by mapping the hypercube into a one dimensional
system as again shown in figure 3.

The ring algorithm is appropriate for a concurrent computer with a one dimensional
mesh interconnect but nonoptimal for a hypercube. It produces long skinny subdomains
which involve more communication than the natural square (hexagonal .. circular) subdomains
which have lower edge/area ratios and hence minimal communication.

IVC The Bisection Algorithm

We can modify the ring algorithm in a simple fashion which leads to much better results.
The bisection algorithm is recursive and at each stage is dealing with a subgraph of the origi­
nal graph. When considering a subgraph, we define the restricted distance d R (i ,j) using a res­
tricted operator A defined so that the "staircase" from I.i> to IJ> only uses intermediate
nodal points that lie within in the subgraph. The recursive method used by ORB is essentially
that mentioned at the end of section III as the best approach to the neural network and simu­
lated annealing approach.

Consider a given subgraph. Then execute the algorithm IVB to define dRUezIJ). Now
rather than dividing the system into N parts, just divide it into two. This is illustrated in Fig­
ures 4(a) and 5(a). In 4(a) we show the first stage in the bisection algorithm. Now that the
graph is divided into two subgraphs, one recursively applies the same algorithm to each sub­
graph. The recursion uses IOB2N stages with a total of 2" subgraphs being generated after the
k th stage is completed. In figure 5(a), we show the final result of this process for the same
problem - a 16x 16 mesh - used for the ring algorithm in figure 3. We see that we have formed
subdomains which are better shaped with lower communication. In fact, as record in table I,
the simple rectangular decomposition on an 8 node hypercube leads for M = 256 to

Tcomm = O.5Mtc""",, (26a)

where as the bisection algorithm leads to

(26b)

and the ring algorithm to

Tc""",, = O.66Mtcomm (26c)

There is actually an in general important technical point that we have ignored in the
above discussion. Thus, the distance d(i ,j) or even importantly dR(i ,J) is only defined for
points Ii> and IJ> that are connected by the full (or restricted) operator A. In general, given
a subgraph, one divides it into connected sectors of points internally linked by A. In the
current algorithm, we sort these sectors in order of decreasing size. Each sector is ordered by
dRU..,I,j) (ORB) or dUul) (ring) and then we assign alternate sectors to the beginning and
end of a list which is then either bisected (ORB) or divided into N parts (ring)

www.manaraa.com

46

IVD Orthogonal Recursive Bisection

It is clear from figure Sea) that the bisection algorithm has one obvious deficiency.
Namely once we have divided a graph into two by a line such as that in figure 4(a), we would
expect that it would be best to choose the division at the next level of recursion to be in some
sense perpendicular to the first cut. We have substantial freedom in delining [\ cut even within
the algorithm of IVB. Thus different choices of the initial point iB can lead to different j,.1
and hence to cuts in very different directions. The ambiguity is irrelevant in the
ring algorithm or in the first stage of the bisection algorithm but it can make important differ­
ences at later stages in the recursion.

We will in fact change the basic bisection algorithm as follows. This only applies to
stages later than the first. Identify all boundary points. These are all points IIbovnda'll> in the
subgraph such that (A + AT) Ubotmda'll> contains a point in the other subgraph formed in the
bisection that gave the given subgraph. These are marked by circles in figure 4(b). Choose
anyone boundary point UR >. Let If A> be a boundary point such that dRUR,iA) is maxim­
ized. Now order all points with respect to Ij ... >. Let the boundary point liB> maximize
dRU ...)B). This seemingly complex procedure is intuitively simple. We wish to form a line of
boundary points and fmd a beginning Ij ... > and end lIB > point on the boundary. In its sim­
plest form, the new algorithm now orders all points II> in the graph by the difference in dis­
tances

(27)

This intuitively will divide subgraph into two with a cut that divides the boundary in
two and, initially at least, the new cut is orthogonal to the boundary which represents the pre­
vious cut. Thus we term the orthogonal recursive bisection or ORB algorithm.

Figure 5(b) shows this clearly where the algorithm of this section has moved the third
cut from its position in figure 5(a). However note that it only is orthogonal to the second cut
near the boundary. It tails away so that for instance processor I holds a strangely shaped
domain. This may not be a serious problem but we can extend algorithm the in the following
interesting fashion. Replace od in Eq. (27) by

PcC

od = ~ [dRU ... k,j) - dk(iBkJ)]
k=l

(28)

Here A1=A and 8 1=8 are the original extrema used in (27). The idea here is to keep the new
cut "straight' and avoid it tailing away by replacing the single points A and B by clusters
which should provide stronger distance constraints. We define Al+l> BH1 used in Eq. (28)
recursively as the points that minimize/maximize respectively the expression

I

od, = ~ [dRU ... k,j) - dRUBk,j)]
k=l

(29)

so that (27) and (28) are given respectively by the values 1=1 and I=Pc" in equation (29).

The single parameter pc .. defines the bisection stage of ORB. We let pc .. =O denote the
non orthogonal algorithm of section IVC and Pc .. =1 equation (27).

Conventionally we use Pc .. =-I to denote an algorithm where od is calculated from (29)
where I is made as large as the subgraph allows. This extreme algorithm can produce strange
results as shown in figure 5(d). Use of Pc .. =-I means that all trace of the boundary is lost

www.manaraa.com

47

and the new cut no longer bisects it.

We should also note that as explained in section lye, this algorithm is not actually
applied directly to the full subgraph but separately to each connected sector within it.

lYE AU"nment
There is on important aspect of the ORB algorithm which remains to be discussed. We

have divided the graph into N subgraphs but not shown how to assign each subgraph to a par­
ticular processor of the hypercube. Remember the algorithms in lye and IYB have log2N
stages. At the k fA stage we align the 2k subgraphs of this stage. For instance in the examples
of figure with Nproo =8, at the first cut we define two subgraphs; one will be shared by proces­
sors 0, I, 2, 3 and the other by 4, 5, 6, 7. The next cut gives four subgraphs to be assigned to
the pairs 0,1 2,3 4,5 and 6,7. After the final cut, we get a unique association between sub­
graph and processor.

The alignment algorithm is controlled by a single parameter P oj..... We have just divided
a subgraph into two; we wish to assign one half to be "lower" (O-bit) and one to be "upper" (1-
bit) in our recursive generation of a hypercube. If this is the first subgraph to be generated at
this bisection stage, we make an arbitrary assignment of upper and lower. Otherwise we com­
pare this subgraph with previous subgraphs that already have been divided. Let us label the
two halves orthe current subgraph [A] and [B]. Let us define a distance D(X,Y) between two
subgraph or subgraphs X and Y. Let [0] be the subgraph consisting of all points assigned
"lower" at this bisection stage and belonging to a neighboring node in the hypercube topology.
[I] is the corresponding "upper" subgraph.

Let

Do = D([B], [0])

Dl = D([B], [I])

D 2 =D([A],[0])

D3 = D([A]. [I])

(30)

We want to label [A] and [B] upper or lower, so as to align them best with the previous assign­
ments. We label [B]lower, [A] upper if Do or D3 is the minimum value of the four distances.
We reverse the assignment is Dl or D2 is the minimum. This is not a unique algorithm and as
we will comment in section Y. it is one of the weaker parts of ORB.

The value of P oj defines the method of calculation of D. The case P oj; ... = I is time con­
suming but simple to explain. D(X,y) is just the sum over elements iEX,jEY of the point
distances dR(i ,j). These distances are calculated over the restricted domain gotten from the
union of[A] [B], [0] and [I]. P oJ; ... =O is a much faster calculation and almost as reliable; it is
illustrated in figure 4(c). D([A(B)],Y) is just calculated as the sum of all points JEY of the
distances dR(A (B),j) from the single extreme point A (B) in [A]([B]). A and B are the
extrema found in the bisection stage from minimizing or maximizing (29).

The alignment algorithm is not perfect - for instance in figure 5(a) one would "expect"
the domains assigned to processors 6 and 7 to be reversed. The algorithm also has some
niceties in its implementation to cope with the case when the subgraphs contain disconnected
sectors. We will suggest in section Y that it may be better to use simulated annealing or neural

www.manaraa.com

48

networks to improve the alignment.

We should comment on the timing of ORB. In the normal case of P oJ;gn = 0 and pc .. =O
or a small positive integer, we have the excellent result:

TOM = const. M log~ N (31)

The choices P oJ;g~ = I or pc .. = -I involve times proportional to the square of the
number of points and as shown in section V, this large time increase is not warranted by any
improvement in the balancing. Also in these cases, the neural network method will typically
run faster than ORB. For the simple case (31), the timing of ORB is formally lower than that
of the algorithms in section III.

V Results and Discussion

We have run a limited set of tests of the new method and our results are contained in
tables 1,2 and figures 3, 5,6,7,8. We have chosen three classes of matrix A:

A;) The matrices A corresponding to a Laplacian discretized on a square two dimensional
mesh with either a 16x 16 or 64x 64 grid.

A;;) The matrix A with 544 rows studied in Ref. 3. This corresponds to the finite element
solution of an irregular two dimensional region with a concentration of mesh points in a
small subregion.

An;) Matrices with a random distribution of elements and either 256 or 4096 rows.

In each case the value of L, the number of nonzero elements in each row takes the value
4.

We can compare four decompositions:

D;) The best (or nearly best) decompositions that are known for cases A;. A;;). For A;;), this
comes from simulated annealing.

Dii) The Ring decomposition of section IVe.

D;") The ORB decomposition with various parameters pc. and P oJig,,'

D i.) A random decomposition where we arbitrarily divide the M rows into N equal sets.

We have not explored simulated annealing and neural networks in detail here because
we know that then will give a good decompositions for this class of problem2,3.4.8.

In Table I, we study mesh problems A;). We find that for small N, ORB is almost per­
fect and even for Nm64 the ORB decompositions only lead to decompositions that have about
50% higher communication than the optimal case. The method works as well on large 4096
rows as small matrices. As expected, ORB always performs significantly better than the
ring algorithm; both are far superior to the random decomposition. The preferred parameter
values appear to be P ... =16 and PoJign=O or I, but all solutions in table I are quite good. Table
I(c) applies ORB to the case Aii) and is very encouraging. ORB appears to work as well for
irregular as regular meshes. It gives a solution that is quite competitive with that obtained by
simulated annealing in Figure 6 taken from Ref. 3. Figure 7 and 8 show the ORB solutions
with Pc"= 16 and P oJiII"=O and I respectively. These last two have the same division into 16
sectors but differ in the alignment stage i.e. in the assignment of sectors to hypercube nodes.
We see from table I(c) that the more sophisticated PoJ;gn=1 algorithm gives the better result.

www.manaraa.com

49

In Table 2, we consider random matrices. Even here, ORB can improve over a purely
random assignment although only by about 20%. In this table, the parameters Pc .. =-I,
P align = I give the best results. Comparing table I and 2, we see that random decompositions
give about the same communication time whether the matrix to be decomposed is very struc­
tured as in Ai) or random as in Aii)' ORB, of course, does find the correlations in Ai) and
give decompositions which have much lower communications in this case. The results in table
2 also allow us to improve the worst case estimates given in equations (7-1) and (8). We find
that the use of the improving routing described in the appendix decreases (7-1) by a factor of
approximately two and corresponding increases the speedup estimate in (8) by the same fac­
tor.

If we examine the "mistakes" made by ORB we see that certainly the sub domains are
non-optimal as illustrated in figure 5(b). Further probably more important in examples stu­
died here, ORB misaligns the bisected subgraphs and incorrectly assigns subdomains to pro­
cessors. It is likely that one can improve the algorithms in section IV in this regard but in the
following we speculate on a different approach.

We regard ORB as providing a coarse graining of the domain; in another language it
divides the problem into objects which are to be manipulated separately. Considered as such,
it is natural to use ORB to divide the graph (domain) into more objects than processors. A
reasonable choice may be to divide the original domain into No objects with perhaps:

No=(8-16)N (32)

This easily achieved by using ORB as described in section IV but in a mode that
corresponds to a hypercube of dimension 3 or 4 more than the original. Ref. [II] describes
how these objects can be manipulated by a dynamic load balancer.

Now we fix the make up of the objects but allow their assignment to particular proces­
sors to change. This can nicely be obtained by using simulated annealing to improve the
decomposition of the objects. Note that the original graph defined between elements defines
a new graph among the objects into which the elements have been clustered. Thus the for­
malism of section III can be applied immediately. This approach has two significant advan­
tages over simulated annealing or neural networks applied directly to elements.

(i) Simulated annealing and neural networks works speedily on small systems but they may
be impractical on to apply it large M ~ 106 systems. It will definitely take too long a
time to find a good decomposition for simulated annealing and neural nets may also be
too time consuming. (26) implies a modest number (~I 0,000 for the current practical
limit N $ 1024) of objects and a much faster annealing. The ORB step to reach (32) is
deterministic and linear in system size and, for choices like pc .. = 16, P align =0, will be
quite practical on very large systems.

(ii) Simulated annealing and neural networks applied to the basic elements can be trapped in
local minima. It is not possible to use them to evolve from a ring or ORB generated
decomposition as these represent local minima. To find a better global minimum it is
necessary to "waste" the ORB step by melting the system (using large a temperature T)

and re equilibrating it. What one really wants is in fact a coherent move of groups of ele­
ments which is proposed by the simulated annealing or neural network algorithms
applied to objects.

www.manaraa.com

50

The advantages that ORB has in forming objects or the initial decomposition do not
extend to its use dynamically to redistribute objects of elements corresponding to a dynami­
cally varying A. There are two useful comments here

(iii) Neural network or simulated annealing methods naturally run on the hypercube itself [9]
and this is the only natural way to implement a dynamic load balancer. ORB has steps,
like finding distances between points, which have concurrency but for which we have
not developed a version that would run on the hypercube and so be efficiently useable
by a load balancer.

(iv) Dynamic load balancing differs from the initial decomposition problem in that the matrix
A is typically not dramatically different from its value when the current decomposition
was performed. Thus, the current assignment of elements to processors should be rea­
sonable. Under these circumstances the neural network method should take a time

(33)

rather than

(34)

The time (33) is now, unlike (34), competitive with ORB and as described in (iii) is
speeded up by a factor N if implemented concurrently on the hypercube.

We intend to explore the hybrid ORB-simulated annealing/neural net approach in future
research. We also hope to look at a wider variety of underlying matrices (graphs) A. Particle
dynamics and neural simulation problems provide a rich source of such sparse matrices with
an interconnect that has structure which is not trivially exploited by a simple domain decom­
position. It would be interesting to find out if truly random matrices are ever important. It is
interesting that ORB/simulated annealing/neural networks applied to any matrix A will in
fact find any existing correlations! Maybe some problems that are currently considered ran­
dom have hidden structure that can be uncovered by the techniques discussed in this paper.

Acknowled&ements

I would like to thank Jon Flower for his help. Wojtek Furmanski developed the neural
network approach reported here.

Appendix A: Routing on the Hypercube

Here we describe the algorithm used to route a given clement Xi to its set or associated
nodes (Pi)' These are nodes Pi such that Aii is non zero. The algorithm used is as follows:

Initialize list of visited nodes to Pi'

Set route length to O.

o Loop over all visited nodes and all targeted nodes (Pi) to be visited. Route Xi to target
Pjml,n chosen so that total route length at this stage is minimized.

If total route length 2: N -I, set route length = N -I and end.

If all target nodes visited, end.

www.manaraa.com

51

Otherwise add Pi_ and all intermediates nodes on route to Pi 'oID to visited list and res­

tart at O.
This is a simple approximation to the solution of the traveling salesman on the hyper­

cube. Xi is the salesman, (Pj) are cities to be visited. It may be easy to improve the algorithm
but it seemed to give reasonable results.

References

I. CS P-385, "A Review of Automatic Load Balancing and Decomposition Methods for the
Hypercube," G. C. Fox, November 1986

2. C S P-255, "Concurrent Computation and the Theory of Complex Systems", G.C. Fox, S.W.
Otto, March 3, 1986

3. CSp-292, "A Preprocessor for Irregular Finite Element Problems", J.W. Flower, S.W.
Otto, MC. Salama, June 1986

4. CS p-363, "Load Balancing by a Neural Network," G. C. Fox, W. Furmanski, September
1986

5. CS p-314, "Optimal Communication Algorithms on the Hypercube", G.c. Fox, W. Fur­
manski, July 8, 1986

6. W. Furmanski, Private Communication, 1986

7. S. Kirkpatrick, C.D. Gelatt Jr., and MP.Vecchi, Science 220, 671 (1983); S. Kirkpatrick,
J. Stat Phys 34 , 975 (1984)

8. CS P-214, "Monte Carlo Physics on a Concurrent Processor", G.C. Fox, S. W. Otto, E. A.
Umland, November 6, 1985. Published in special issue of Journal of Statistical Physics,
Vol. 43,1209, Plenum Press, 1986

9. J. J. Hopfield and D. W. Tank, "Computing With Neural Circuits; A Model," Science 233 ,
625 (1986) -

10. CSp-371 "Optimization by a Computational Neural Net," R. D. Williams, October 10,
1986

11. CSp-32S, "The Implementation of a Dynamic Load Balancer", C. Fox, A. Kolawa, R.
Williams, November 1986, submitted to 1986 Knoxville Hypercube Conference.

www.manaraa.com

Decom-

position

N

4

8

16

32

64

Decom-

pOlition

N

4

8

16

32

64

Decom-

position

N

16

Belt

0.25

0.5

0.75

1.25

1.75

Beat

0.0625

0.125

0.188

0.375

0.488

52

Table 1: Decompositions of Two Dimensional Meshes
Coefficients C in T."""" = Ct.""""M

(a) 16x 16 Square Mesh

P ... =O P ... =I P ... =J6 P ... =16 P ... =-l P ... =l Ring

P align=O P align=O P a1ig,,=O P a1ig .. = 1 P a1ig .. = 1 P alig .. = 1

0.25 0.25 0.25 0.25 0.258 0.25 0.305

0.566 0.582 0.484 0.484 0.598 0.582 0.664

1.0 0.836 0.809 0.930 0.988 0.836 1.38

1.65 1.58 1.43 1.57 1.51 1.50 2.40

2.65 2.49 2.35 2.56 2.38 2.72 3.28

(b) 64x64 Square Mesh

P ... =O P ... =l P ... =16 P • .,=16 Pc .. =-I P ... =l Ring

Palig .. =O P align = 0 P alig,,=O Palig" = 1 P alig .. = J P a1ig .. = 1

0.0625 0.065 0.0625 0.0625 0.0659 0.0625 0.076

O.lSl 0.142 0.140 O.HO 0.156 0.142 0.162

0.216 0.230 0.225 0.225 0.229 0.229 0.333

0.385 0.477 0.446 0.434 0.426 0.449 0.671

0.640 0.671 0.619 0.649 0.615 0.673 1.35

(c:) Irregular plate with 544 total mesh points studied in Reference 3

B •• t P • .,=O P ... =I P ... =16 P ... =16 P • .,=-I P ... =I Rina

P alig .. =O P alig .. =O P a1i ... =O Pali ... =1 P a1ign= 1 P a1ig,,= I

0.601 0.72 0.67 0.68 0.6S 0.68 0.68 1.38

Random

2.00

3.23

4.32

5.85

7.25

Random

2.09

3.33

4.66

6.03

7.45

Random

4.52

www.manaraa.com

Oeeom-

pomtion

N

4

8

16

32

64

Decom-

position

N
4

~
16

32

64

P ... =O

1.77

2.87

4.05

5.28

6.58

53

Table 2: Decompositions of Random Matrices with L =4
(number of nonzero columns per row)
Coefficients C in Tcomm = CtcommM

(a) M=256 rows

P ... =l P ... =16 pc .. = 16 P ... =-I P ... =I Riflll

PaliQA=O Palig,,=O P aliq,,= I Palign=l P alig,,= 1 P alig,,= 1

1.74- 1.17 1.73 1.65 1.74 1.90

2.77 2.72 2.74 2.62 2.77 3.05

3.87 3.76 3.77 3.75 3.97 4.29

5.10 5.00 4.95 4.89 5.08 5.60

6.34 6.46 6.28 6.07 6.46 6.95

(b) M=4096 rows

P ... =O P ... =l Pc .. =16 pc .. = 16 P ... =-l P ... =l Ring

P aliqn=O P aliqn=O P aliqn= 1 P align= 1 Paliqn=l
1.80 1.78 1.75 1.74 1.67 1.77 1.92

2.87 2.82 2.74 2.75 2.63 2.81 3.06

4.02 3.92 3.83 3.81 3.69 3.90 4.32

5.21 5.06 4.97 4.99 4.78 5.06 5.64

6.45 6.27 6.17 6.19 5.94 6.28 7.02

Random

2.12

3.31

4.68

6.02

7.53

Random

2.10

3.34

4.70

6.12

7.60

www.manaraa.com

3

I

54

STANDARD RECTANGLE
DECOMPOSITION

T comm IN = 0.5 tcomm

N proc " 8 NODES N = 256 POINTS

2 6

0 4

Figure 1

7

5

A Domain Decomposition for the case when A comes from the discretization of
the two dimensional Laplacian. The cells assigned to a particular processor are
labeled by its number.

• NODE

CONNECTION

A MINIMUM PATH IN GRAPH

Figure 2

NATURAL TWO
DIMENSIONAL
DISTANCE

The distance d defined in equation (24) illustrated for the mesh problem.

www.manaraa.com

R
I N

G

D
IV

IS
IO

N

T c
om

m
/N

=
O

.6
6

6
 t

co
m

m

N
pr

oc
 =

 8
 N

O
D

E
S

N

 =
 2

5
6

 P
O

IN
T

S

F
ig

ur
e

3

T
he

 R
in

g
 d

iv
is

io
n

al
go

ri
th

m
 d

es
cr

ib
ed

 in
 s

ec
ti

on
 IV

 a
nd

 il
lu

st
ra

te
d

fo
r

a
16

x1
6

m
es

h
de

co
m

po
se

d
ov

er
 a

n
8

no
de

 h
yp

er
cu

be
.

V
l

V
l

www.manaraa.com

(0
)

F
IR

S
T

S

T
A

G
E

(b

)
T

Y
P

IC
A

L
R

E
C

U
R

S
IV

E

S
T

A
G

E

1
,d

01

=

1
6

~

. .

 .
. .

 .
. .

 .
. .

,

I
· ,

 .
 .

. .
 .

. .
 .

.--
-.

,
I

· .
 ...

. .
 .

. .
 .

.-
.

.
"

I
· .

 .
,
. .

 .
.

.--
-.

.
.

,
1

· .
 .

. -
. .

 .-
--.

.

.
.

,
I

· .
 .

. .
 '.

.-.
 .

 .
 .

 .

',
I

· .
 .

. .
 .

-,
 .

 .
 .

 .
 .

I

'
·

.
•

•
.__

_e
.

•
•

•
.

•
I

'
•

•
•

0·
--

·
•

•
•

'-
,.

•

•
,

~

. .

 .
. .

 .
. .

 ,
. .

,
_

-F

IR
S

T

C
U

T

•
•

•
•

•
•

•
•

•
•

•
• ,

2
·

•
•

•
•

•
•

•
•

•
•

'-

A
I

@

A
3

•
@

 A
2

•
•

@

•
•

•
®

•
•

•
•

@

•
•

•
•

•
®

•
•

•
. .

 /'/

/
· .

 .
. ,

 .

/

· .
 .

-"
.

/
/

· .
 ~ /

•
•

· .
. .

 .
.

/ .-"
\.

.
.

.
S

E
C

O
N

D

C
U

T

• • • •

@

A
i

B
i

®
 •

(!
)

•
•

•
•

•
•

F
ig

ur
e

4a

F
ig

ur
e

4b

F
ig

ur
e

4

T
hr

ee
 s

ta
ge

s
of

 o
rt

ho
go

na
l r

ec
ur

si
ve

 b
is

ec
ti

on
 il

lu
st

ra
te

d
fo

r
a

si
m

pl
e

tw
o

di
m

en
si

on
al

 m
es

h.
 (

Fi
gu

re
s

4a
, 4

b,
 a

nd
 4

c)
,

B
O

U
N

D
A

R
Y

P

O
IN

T
S

TO
P

E

X
T

R
E

M
A

B
O

T
T

O
M

E

X
T

R
E

M
A

@

•
@

 B
2 @

B
I

•
• B
3

V
l

0
\

www.manaraa.com

57

(c) TYPICAL ALIGNMENT STEP

/~ • • • • • • • • • • ;e A " /.
• " • • • • • • • • .II --;--A

" [1] / · . '. " . . " /

• • • ", • • • • J'/. • • " / · . . . ~ . . ~
" / • • • • • '- e! • • • • •

[AJ "" [0]

• • • • • J' ~ • • • • •
/ " • • • • .II • • • • • • •

/ " · . . /" '-". . .
/ " .. ",.

SECOND CUT

• /./. • • .[8]. • • • ' v---FIRST CUT

'\. • · • · · · · • ·8)-
ANOTHER SECOND CUT

GRAPH HAS BEEN BISECTED INTO FOUR REGIONS
[0] [1] [A] [B]

Form DO =dR(B to [0])

0, =d (B R to [1])

O2 =dR(A to [OJ)

0 3 =d (A
R

to [1])

If DO or 0,3 smallest [8]= 2. [A]= 3

0, or O2 smallest [BJ=3. [A)=2

Figure 4c

www.manaraa.com

(0
) , ,

 7

(
b

)

, ,

..
..

O
R

T
H

O
G

O
N

A
L

R
E

C
U

R
S

IV
E

B

IS
E

C
T

IO
N

--
--

-F
lR

S
T

 C
U

T

···
···

···
···

···
···

S
E

C
O

N
D

 C
U

T
-
-
-
T

H
IR

D
 C

U
T

T
co

m
m

/N

=

 0
.
5

6
6

t c
om

m

P C
U

I
=

 0

P o
li

qn

=

0

....
....

....
...

:--
..:.

....

....
.

.....
.....

.....
.....

.....
.....

..

Tc
om

m
 IN

 =
 0

.5
8

2
 t

co
m

m

P c
u

l
I

P o
li

gn
 =

 0

N
pr

oc

.....
. ,

.....

8
N

O
D

E
S

N

 =
 2

5
6

P

O
IN

T
S

(c
) "

.....
. ,

....
....

...

7

(d
)

Tc
om

m
 IN

 =
 0

.4
8

4
 t

co
m

m

P c
u

l
=

 1
6

P
O

l i
on

 =
 0

 3

.....

.....
.....

. --
.

~
 . .;

,."
,,-

...
 ...

.....
. --....

.
.....

.
4

"
.....

5

T
co

m
m

/N
 =

 0
.5

9
8

 tc
om

m

P
 cu

I'
"
 -

I
P o

li
o

n
 =

3
~

.~

,...
....

....
....

....
....

...
2

...
...

...
..

.
3

2

6

6
o

.....
.....

.....
...

."

"
,
:
-
.
~

.....
.....

.....

....

....
....

7

.....
.....

.....
.

...
.

0
f

....
....

....
.

4

.....
....

.....
....

5
.....

.....
.

.....
 ,

F
ig

ur
e

5

So
m

e
ex

am
pl

es
 o

f d
ec

om
po

si
ti

on
s

ge
ne

ra
te

d
by

 O
R

B
 f

or
 a

 1
6x

16
 m

es
h

de
co

m
po

se
d

on
to

 8
 p

ro
ce

ss
or

s.

.....
.....

V
1

0

0

www.manaraa.com

59

IRREGULAR PLATE
GOOD ANNEAL! NG DECOMPOSION

AVERAGE COMMUNICATION COST = TcOMM/N=O.63 tcomm

8 9

10

14

13

12
I~

2 6

Figure 6

A good decomposition of the irregular plate problem studied in Ref. 3 and found by
simulated annealing. This problem has 544 nodal points decomposed over 16
processors.

www.manaraa.com

60

I RREGULAR PLATE

ORTHOGONAL RECURSIVE BISECTION

Pcut = 16 Paiion = 0

AVERAGE COMMUNICATION COST Tcomm/N = 0.68 tcomm

7 6

4

3

12

2

1015

Figure 7

The same problem as shown in Figure 6 but now decomposed by the ORB
technique with parameters Pcwt = 16, Palign = o.

www.manaraa.com

61

I RREGULAR PLATE

ORTHOGONAL RECURSIVE BISECTION

P cut = 16 Palign =

AVERAGE COMMUNICATION COST Tcomm/N = 0.63 tcomm

7 6

1014

Figure 8

The same bisection as in Figure 7 but with the alignment parameter Palign = 1.

www.manaraa.com

Abstract

A Review of Automatic Load Balancing
and

Decomposition Methods for the Hypercube

Geoffrey C. Fox t
California Institute of Technology

Pasadena, CA 91125
December 5. 1986

Presented at Minnesota Institute for Mathematics and Its
Applications Workshop November 6.1986

We give a brief review of the research at Cal tech on methods to automatically decom­
pose or load balance problems on the hypercube concurrent computer. We have several
promising methods and are implementing a dynamic load balancer on the hypercube.

I: Introduction

At the Minnesota workshop. I gave a general review of the Cal tech research on load
balancing techniques for problems running on the hypercube. This report is a brief summary
of this talk while as a companion contribution [I] to the proceedings, I consider one particular
application, sparse matrix-vector multiplication, in detail. There, I show how to apply the
simulated annealing and neural network methods and introduce and test a new graphical tech­
nique. orthogonal recursive bisection or ORB. Neither of these papers is complete but
between them, they illustrate the Caltech research effort This review does contain a complete
set of references to our current reports.

In Section II. I present a general framework for the work formulated as an optimization
problem in the context of a general theory of complex systems. In Section III, we review the
various decomposition techniques while in IV, we discuss their use as a dynamic load
balancer running side by side with the user code on the hypercube. Section V speculates on
the future.

We will not distinguish the terms decomposition and load balancing here although the
former tends to refer to static and the latter to dynamic implementations that change as the
problem progresses. Most of the ideas discussed are equally applicable to either static or
dynamic load balancing and. in general. we will discuss the latter as a more general scenario.

t Work ouppc>oWd in pari by DOE 1 DE-FG0S-86ER26()()Q, Panona and 8yaCem DovolopmeM
FoUDda&iono. and U.O 0« .. 0 of Ulo ____ 01 U.o Joinl TocUcaI Fuoion OffICO.

www.manaraa.com

64

II: Complex Systems and Optimization

We have shown in Refs. 2 and 3 how the so called theory of complex systems is a useful
framework for studying both load balancing and general properties of problems that determine
their implementation on concurrent computers.

Crudely, we can consider a complex system as a collection of entities with some sort of
static or dynamic connection between them. Some possibilities are illustrated in Figure 1.
This shows that in many cases, one can characterize a complex system by a matrix Aij where
i J label entities and Aij is nonzero if and only if i and j are connected in the system. We
will usually specialize to spaJially-connected systems where the graph lies in a domain that can
be decomposed over the hypercube. This should be contrasted with causally-connected sys­
tems such as the game tree found in computer chess [4]. In this case, the graph has directed
linJcs and in a hypercube implementation extends over time and not "space" - interpreted as
the space formed by the nodes of the hypercube. We will usually restrict ourselves in this
paper to spatially connected systems. These form a large class of important problems includ­
ing circuit simulations, matrix algorithms, partial differential equations and particle dynamics.
In these cases, either an iteration count or the simulation time naturally synchronizes the prob­
lem. The linJcage between entities at a synchronization point defines the spatially connected
graph. We will sometimes term this the algorithmic graph to distinguish it from the dependency
graph dermed by the linkage between the fundamental components in a (FORTRAN) program
that implements this problem on a sequential computer.

Returning to Figure I, we see that load balancing can be viewed as a graph partitioning
task - we must divide the algorithmic graph up into N parts such that each part has the same

size and the partitions 'cut the minimum number of links. Here we have N = 2dS nodes in the
hypercube and the two constraints correspond to equalizing the load on the nodes of the cube
and to minimizing the communication between nodes. We can also view load balancing as
minimizing the execution time of the problem on a concurrent machine. In either case, we see
that decomposition or load balancing is "simply" an optimization problem and so can be tack­
led by any of your favorite optimization methods. As the optimization task is for all interest­
ing problems, NP complete one does not try to find the optimal solution but rather one that is
good enough. As we will see in the next section, our most powerful methods can be though of
as mapping a complex system into a different system with the same graph. Then one uses the
natural optimization method for this new system. This is summarized in Table I below.

Field Entities Optimization Method

Computer Science Nodes of Heuristics
Abstract Graph Expert System

Physics Particles Simulated Annealing
(Statistical Physics
Monte Carlo)

Biology Neurons Neural Networks

Table 1: Three Optimization Methods

We can also draw interesting analogues with other resource allocation problems summar­
ized in Table 2. Similar optimization methods to those described in Section III can be and in

www.manaraa.com

65

some cases have been applied to problems like those in Table 2.

Table 2: 10 Optimization Problems

I. Decomposing graphs (problems) onto hypercube

2. Coarse Graining: rmding medium grain objects for object oriented approach

3. Fine grain dataflow assignment

4. Use of ·caches" on shared memory concurrent machines and sequential computers

S. Optimizing compilers

6. Optimal adaptive meshes and determination of cells for "particle in the cell" problems.

7. Controlling Nation's Defense System

8. Designing Nation's Defense System

9. Controlling AT and Ts phone network

10. Designing AT and Ts phone network

III: Load Balanciog Methods

Initially, we describe in IlIA and IIIB two heuristic methods which are easy to apply and
work well in broad classes of problems. The final three subsection III C, D, E describe more
powerful techniques that are generally applicable but require a more elaborate environment
on the concurrent computer.

lIlA: The Scattered Decomposition

This is a simple method which sprinkles the nodes of the hypercube over the underlying
data domain (or algorithmic graph). It is particularly useful in matrix problems which have no
nearest neighbor structure and was introduced for this case by Fox [5) and its use is described
in more detail by Refs 3, 6, and 7. It has also been shown valuable in irregular geometry finite
element problems [8) and ray tracing algorithms [9].

In Ref [2], we show that the scattered decomposition is rigorously optimal for very
rapidly varying or dynamic problems. We can use a general concept of temperature to quan­
tify the concept of rapid variation by mapping a complex system into a gas of particles. The
scattered decomposition corresponds to the high temperature limit

IIIB: Self Schedullog

In our computer chess implementation on the hypercube , we treat the nodes of the con­
current computer as a set of ·workers· to which processes are assigned as they become avail­
able. This is a conventional method of using a shared memory machine but can also be used
in a distributed memory environment. In the case of chess, the "work" is a request for a node
to evaluate a certain move. This request can recursively generate more requests as one
progresses down the game tree. Our current implementation is rather rigid with a number of
"master" nodes controlling servers. This leads to load imbalance (currently about a factor of 2)
which is being improved by a more democratic method with "master" and "worker" functions
being spread out over the nodes of the hypercube. We are developing a multi-tasking hyper­
cube operating environment MOODS that will make this easier to implement [10]. The chess
strategy is the irregular version of oW' optimal algorithm to calculate several scalar products

www.manaraa.com

66

where the underlying vectors are decomposed over the hypercube [II). Each scalar product
becomes a tree and we spread the roots (the "masters") of these several trees evenly over the
cube.

IIIC: Orthollonal Recurshe Bisection

In the accompanying paperl, we introduce a new graphical method for decomposing
problems over the cube. This technique only uses the connection matrix Aij discussed in Sec­
tion II. We think of this as a graph with nodes labeled by ; and links are formed between
nodes i and j of the graph if and only if the corresponding matrix element Au' is nonzero. In
this picture, decomposition becomes a graph partitioning problem. We show in Ref. I how
this can be done recursively, dividing the graph in two at each of dB = 10g~N steps
corresponding to the dB dimensions of the hypercube. Here N is the total number of proces­
sors in the machine. This method only uses the natural distance d (i J) between any two
points in the graph. We also introduce a concept of orthogonality for the divisions in succes­
sive dimensions.

This method, called ORB in Ref. [II, has the following important features:

It is intrinsically approximate and has no natural way of improving the decomposition.
However, as shown in Ref. [II, it gives good results for many problems.

The decomposition time is given by

TJ::!..., ()(Mlo~N (I)

where M is the total system size.

It is not easy to implement a concurrent algorithm for ORB.

IIID: Simulated AnneallnK

The next two methods are analytic optimization methods which are based on minimizing
an energy or objective function of the formll,l~,ls

E = El + El (2)

Here E 1 is a measure of the load imbalance between the nodes and is typically taken as:

E 1 ex ~ [work per nodef (3)
...u.

while El is a measure of the totlll communication, The exact form of E depends on details of
hardware, e.g. arc calculation and communication overlapped, which are unimportant here.
The form (2) is certainly correct for the initial Caltech hypercube hardware and one can
derive the correct relative normalization of Eland E ~ such that E is indeed the execution
time on the concurrent machine [12, 20, 22]. In Equation (3), we have replaced the max

...u.
(work per node) by the least squares sum. Near the maximum of Eh this is unimportant in
most problems. In fact, the form (2) has several advantages over the maximum of the work
per node; in particular, (2) is a local function amenable to analytic optimization methods.

In Refs. (12) and (2), we show that the physics analogy mentioned earlier allows one to
interpret E as the potential energy of a physical system whose particles are labeled by the
index i, E 1 corresponds to a repulsive hard core and E l to an attractive long range potential
Minimizing E corresponds to fmding the ground state of the system. The method of simulated

www.manaraa.com

67

annealing15 just corresponds to the standard statistical physics approach to the determination
of the ground state.

Figures 2 to 4 illustrate the application of this method to a simple finite element problem
[2, 13]. In Figure 2, we show a finite element mesh generated by NASTRAN for the struc­
tural analysis of an irregular two dimensional plate. In Figure 3, we show that a simple equal
area decomposition leads to severe load imbalance which is eliminated in Fig. 4 and
corresponds to the application of the annealing algorithm to the initial imbalanced decomposi­
tion of Fig. 3.

We have shown in Ref. 2 that this physical analogy can lead to phase transitions
corresponding to the onset of diITerent optimal decompositions as a function of the system
temperature mentioned earlier.

Simulated annealing has the following key features:

The method is always approximate but with an appropriate annealing schedule can gen­
erate arbitrarily good solutions.

It is very hard to estimate the decomposition time T1.{-Dmf' which will depend drastically
on the required goodness of the decomposition.

The method can be efficiently implemented on a concurrent machine and will run with
high efficiency on the hypercube. In Ref. [16]. we show that it is not necessary to
enforce the detailed balance constraint and this certainly makes the concurrent imple­
mentation much simpler.

HIE: Neural Networks

Our most recent research has concentrated on the neural network approach to optimiza­
tion introduced by Hopfield and Tank for the traveling salesman problem [17]. We show in
Ref. 18, that neural nets are typically better than simulated annealing in many physics prob­
lems related to the study of spin glasses. The basic idea of neural networks is to find the
minimum of the energy function E 1 defined in equation (2) by a deterministic set of equations.
This is explained in detail in Ref. (19) and reviewed and compared with simulated annealing
in Ref. I. Although the biological analogy17 suggests a general form of the neural net equa­
tions, there are many possible networks. In Ref. (19), we introduce the bold network and
show it to be better than other algorithms for decomposing regular and irregular grid prob­
lems. We have since started to look at other topologies and have shown neural nets to be
excellent for decomposing trees. In Figure 5, we show typical results corresponding to the
decomposition of a mesh containing 1600 points. the histograms are averaged over 200 dif­
ferent initially random decompositions. The overhead is typically 50% greater than the
optimal solution and this does not degrade significantly as one increases the size of the hyper­
cube. One can show that the decomposition time,

(4)

where the system of size M has dimension d.. The results in Fig. 5, correspond to d. = 2 and
a fixed number of 2M1/"J updates with each involving the update of the decomposition of all
M points in the system. In Fig. 6, we compare neural nets with simulated annealing and show
that, at least for the implementations of Refs. 19 and J3 respectively, the new method con­
verges faster. The key features of the neural net method are:

www.manaraa.com

68

The method can be improved by increasing the number of iterations but one can get
trapped in locw minUruL

The method takes a "known" time given in (4) above.

The evwuation of neural networks is similar to any circuit simulation and well suited to
a straightforward concurrent implementation.

IV: A Dynamic: Load Balanc:er

In Ref. 20, we review our current plans to implement a dynamic load balancer on the
hypercube. The essentiw features of this are as follows:

The load bwancer and user program will co-exist on the hypercube running as separate
sets of tasks on each node.

Initiwly, we will only consider problems where the user (program) can estimate the
energy function E - or equivwently the connection matrix Aij and the cwculation com­
plexity Ci of each point.

The bwancer will not move individuw entities (nodw points in Figures 2 to 4) but rather
subdomains controlled by a complete process or task. These can be considered as
objects [I, 20~ This will make the load balancing transparent to the user. Unfortunately,
such a strategy is only possible on the hypercubes with memory management on each
node, and this excludes many of our favorite machines_ ..

The strategy for moving objects from processor to processor will be determined by a
concurrent implementation of the simulated annewing or neurw network methods.

The initiw decomposition into objects can often be performed by the user but the
method of Section me, orthogonw recursive bisection, is an attractive wternative [I].

We have not yet thought through the issues connected with interplay of the load bwancer
and the user program i.e. what criteria should one use to invoke the balancer. We expect
to explore some simple ideas with our initiw implementations [20].

V: Conclusion.

A year ago, we thought that automatic decomposition or load bwancing was the key
issue in determining the generw applicability of hypercubes. To our surprise, we have found
several methods that work well and the development of the algorithms in Section III is
perhaps most limited by the lack of problems that are hard enough! We would like help in
identifying the difficult problems and putting them in a form where we can study their decom­
position. Complex event driven simulations and certain sparse matrix problems need study.

We believe that the dynamic load balancer reviewed in Section IV is technically hard to
implement but that we understand the essential issues and the project described in Ref. 20,
will be successfuL

Even when the load balancer runs efficiently on the hypercube, the user must still write
the code to control each object. We wonder if it may be possible to be more ambitions.
Namely, one can formulate a more ambitious optimization than that studied in sections II and
Ill. Can we take the dependency graph formed by the sequential code implementing a given
problem and decompose this directly? This would both form objects, assign them to nodes of
the cube and generate the necessary code to control them.

www.manaraa.com

69

We believe that the neural network approach to optimization is very powerful and will
be developed for many applications; especially those connected with intelligence - that exist­
ing now in man and that we wish to endow on future computers. Clearly, our rather modest
application of neural networks to decomposition will evolve as the field does. In particular,

we expect to improve the neural network decomposition time from MHI/ tI, to M log M.

Acknowledaements

I would like to thank my many collaborators in this research - in particular D. Jefferson
at UCLA and J. Flower, W. Furmanski, A. Kolawa, S. Otto, and R. Williams at Caltech. I also
thank M Schultz for inviting me to the interesting workshop.

References

1. "A Graphical Approach Load Balancing and Sparse Matrix Vector Multiplication on the
Hypercube", Geoffrey C. Fox, Presented at Minnesota Institute for Mathematics and Its
Applications Workshop, C3P-327B, November 6, 1986.

2. "Concurrent Computation and the Theory of Complex Systems", Geoffrey C. Fox, Steve
W. Otto, March 3, 1986, submitted to proceedings of 1985 Hypercube Conference at
Knoxville, C3P-255, August 1985.

3. "Solving Problems on Concurrent Processors", Geoffrey C. Fox, Mark A. Johnson, Gre­
gory A. Lyzenga, Steve W. Otto, John K. Salmon, November I, 1986, to be published by
Prentice Hall.

4. "Chess on the Hypercube", E. Felten, R. Morison, S. Otto, K. Barish, R. Fatland, F. Ho,
C3P-383, November 1986.

5. "SQuare Matrix Decomposition: Symmetric, Local, Scattered" G. Fox, C3P-97, August
13, 1984.

6. "A Banded Matrix LU Decomposition on the Hypercube", T. Aldcroft, A. Cisneros, G.
Fox, W. Furmanski, D. Walker, C3P-348.

7. "Matrix", G. C. Fox and W. Furmanski, C3P-386.

8. "The Scattered Decomposition for Finite Elements", R. Morison, S. Otto, C3P-286, May
19, 1986.

9. "Graphics Ray Tracing and An Improved Hypercube Programming Environment", J. Sal­
mon, C3P-345, July 31, 1986.

"Static and Dynamic Database Distribution for Graphics Ray Tracing on the Hyper­
cube", Proposal to JPL Directors Discretionary Fund, J. Goldsmith and J. Salmon, C3P-
360.

10. "The MOOOS System Software", (Multitasking, object oriented), John Salmon, C3P-346,
August 4, 1986.

11. "Optimal Communication Algorithms on the Hypercube", G. C. Fox and W. Furrnanski,
C3P-314, July 8, 1986.

"Communication Algorithms for Regular Convolutions on the Hypercube", G. C. Fox,
W. Furmanski, C3P-329, September I, 1986, submitted to 1986 Knoxville Hypercube
Conference.

www.manaraa.com

70

12. "Monte Carlo Physics on a Concurrent Processor", G. C. Fox, S. W. Otto, E. A. Umland,
C3P-214, November 6, 1985. Published in special issue of Journal of Statistical Physics,
Vol. 43, 1209, Plenum Press, 1986, CAL T-68·1315.

13. "A Preprocessor for Irregular Finite Element Problems", J. W. Flower, S. W. Otto, and M
C. Salama, C3P·292, June 1986.

14. G. Fox, D. Jefferson, S. Otto, Paper in Preparation.

15. S. Kirkpatrick, C. D. Gelatt Jr., and M P. Vecchi, Science 220, 671 (1983); S. Kirkpa·
trick, J. Stat Phys. 34, 975 (1984).

16. "Minimization by Simulated Annealing: Is Detailed Balance Necessary?" R. D. Williams,
CALT·68-1407, C3P·354, September 3,1986.

17. "Computing With Neural Circuits: A Model", J. J. Hopfield and D. W. Tank, Science
233, 625(1986).

18. "Optimization by a Computational Neural Net", R. D. Williams, C3P·371, October 10,
1986.

19. "Load Balancing by a Neural Network", G. C. Fox, and W. Furmanski, C3P-363, Sep·
tember 1986.

20. "The Implementation of a Dynamic Load Balancer", G. Fox, A. Kolawa, R. Williams,
C3P·328, November 1986, submitted to 1986 Knoxville Hypercube Conference.

21. "Concurrent Processor Load Balancing as a Statistical Physics Problem", G. C. Fox and
D. Jefferson, C3p·I72, May 28, 1985.

22. G. Fox, unpublished note on load balancing, 1986.

www.manaraa.com

(0
)

(b
)

C
O

M
P

LE
X

S

Y
S

TE
M

S

(e
)

",:_
--

e2
x

_
ell

.
•

ell
.

P
a

rt
ic

le
s

-
In

te
ra

ct
in

g

en

!
I

•
•
•
•
•
•
•

lL
"'

c
"x

. ~ ~
<Da

.x.
 ; C

L"

'b
nx

·
w

ith
 a

 F
or

ce
 o

f
I I

I

ra
n

g
e

:
~

L

 __
__

_ L
 __

__
_ 1

 __
__

n

'O

.·0

.-0

~

-
C

o
e

ff
ic

ie
n

t

(d
)

1
0

-
-
-
-
-
-

--
--

-T
--

--
-;

,
I I l I I I I

f-
-

H
~
-

I I
!

I L!
:

=-
'

I I
I

~
c
-_

-t

-l
--

"T

I
I

I
1

I
F·

+
~
-
f-
~ I I ~

P
ar

tic
le

s
-

in
 a

2D

 C
ry

sl
ol

 I
nt

er
ac

tin
g

w
ith

 a
 N

ea
re

st

N
ei

gh
bo

r
F

or
ce

Ea

ch
 s

et

--
O

R

of
 4

 l
in

es

I-
-

is
on

ly

F
in

it
e

D

iff
er

en
ce

I-

-
cu

t
on

ce

A
pp

ro
xi

m
at

io
n

I-
-

to

'lJ
2

w
ith

-;

-;
T

;-
-;

-;
-;

r-
;-

;-
G

nd
 P

o
in

ts
 -

-

-
F

un
da

m
en

ta
l

E
n

tit
y

(m
e

m
b

e
r)

C
on

ne
ct

io
n

or

C
om

m
un

ic
at

io
n

be
tw

ee
n

m
em

be
rs

D
el

in
ea

te
s

D
ec

om
po

si
tio

n
on

to
 S

ep
er

at
e

no
de

s
o

f
a

co
nc

ur
re

nt

co
m

pu
te

r

F
ig

ur
e

1

I
I

-I
-
--

-I
-
-

M
a

tr
ix

 M
ul

tip
lic

at
io

n
(I

nv
er

si
on

)
E

ac
h

-
is

 a

M
at

rix
 E

le
m

en
t

O
n

I y
 a

 S
e l

ec
lio

n
o

f
C

on
ne

ct
io

ns

S
ho

w
n

F
ou

r
co

m
pl

ex
 s

ys
te

m
s

w
ith

 t
he

ir
 a

ss
oc

ia
te

d
gr

ap
hs

 w
ith

 s
am

pl
e

de
co

m
po

si
ti

on
s

in
di

ca
te

d
by

 d
as

he
d

lin
es

.

-.
J

www.manaraa.com

72

1',../ I"
r-..;.

1/

.......
./

V "
1/

\ I.---- -.........) \
I \

"- /
/''- -,/\

Figure 2

A 544 nodal point mesh generated by NASTRAN for a sample two dimensional
plate finite element problem [13].

I-

~

www.manaraa.com

I'-..

73

<
Figure 3a

Minimum load = 6
Maximum load = 331

Figure 3b

Figure 3

A simple two dimensional equal area decomposition for the problem of Figure 2
showing severe load imbalance. This corresponds to a 16 node hypercube [13].

www.manaraa.com

-

74

Figure 4a

-

Figure 4b

Figure 4

Minimum load = 32
Maximum load = 36

The result of simulating annealing applied to the problem of Figure 2 for
decomposing onto a 16 node hypercube [13].

www.manaraa.com

O./¥t

0.24

0.2lt

>-4
~ -~ -
~ 0.,0

<
.0
0 .x::
~

O.1tO

0.4S"

75

i-node
SOJ.D NETWORK.
RE"GW..A-R GfitlD
r=ltOx40== tt6'OO
I:2~=go

'(200 RA-'N1>OH
It-node STAATS

2.5"

(
'a- ncx1e

2.0 25 7
~'-ttode

2.'5" 7
!.2.-"ode

1.0 .2S 7
6&t-node

1.0

Figure 5

A plot of '1 - the ratio of actual communication cost to the optimal - for the bold
network applied to a 40 x 40 grid averaged over 200 random initial conditions. The
average values of < ry> are shown by arrows and results are given for 2, 4, 8, 16, 32,
and 64 node hypercubes [19].

www.manaraa.com

~
0

cJ --,---..
C
CJ
II
.:-
~

-\0

S

%

T

G

S

It

3

2

.
• .
• . . .

• . .
•

'. • . . • •
'0.

76

•••••••••

. .
o

•• • I , ~
o 0_

I \
01'\1 t1 Ah

i r--- ---~------ --~----m----T ----- ~------

O.S ""·0 ~s f 2.0

I=%,'V.2.Jf

Figure 6

A plot of TJ - the ratio of actual communication cost to the optimal - for both
simulated annealing [13] and the bold neural network [19] applied to the plate
problem of Figure 2. TJ is plotted against an iteration count - each point is moved
once in a single iteration.

www.manaraa.com

ADAPTIVE METHODS FOR HYPERBOLIC PROBLEMS

ON LOCAL MEMORY PARALLEL PROCESSORS

1. Introduction

William Gropp
Yale University

Parallel computers have opened up new directions for algorithm development. But the variety
of parallel architectures and programming methods has lead to two apparently different models of
computation. In this paper, I show that these models can be considered as special cases of memory
access, similar to data cacheing. The numerical solution of hyperbolic partial differential equations
is uses as an example, since simple algorithms for these problems exist and are representative of
more realistic algorithms.

In any parallel algorithm, there are several considerations: the nature of the parallelism,
the control of access to shared objects, and the programming tricks and optimizations. In many
problems, the parallelism is expressed as a division of the problem by domains, either explicitly
or through the division of a "do-loop" across multiple processors. Advantage is often taken of
"locality of reference", where each processor works as much as possible with "local" data. This
simplifies the control of access to shared data, a major problem in correctly programming parallel
computers. Most algorithms (asynchronous ones excepted) must guarantee that data is ready before
use. Finally, any number of tricks can be applied to speed the algorithm up. Some of these are
general, such as noting that the algorithm itself may guarantee that data is ready before it is used;
others are specific to a particular implementation or architecture.

Any parallel algorithm is concerned with the sharing of data in parallel. Only the parameters
(costs) of doing so changes. We will discuss a unified model which suggests different techniques
and rationals for various parallel architectures.

Adaptive methods for hyperbolic partial differential equations (PDEs) are a good model be­
cause there is a well defined locality of reference and obvious parallelism. Good solution techniques
for, say, linear equations, aren't as obviously parallel (at least yet).

As is the case for vector supercomputers, a major constraint in any high performance parallel
algorithm is "memory bandwidth". However, for a parallel computer, the "memory bandwidth"
may contain message sending costs or critical section costs in addition to the usual memory hardware
costs. The same techniques which have been applied to non-parallel, virtual memory computers
may be appropriate for parallel computers.

1.1. Connnunication model
I will consider two types of parallel computer: message passing and shared memory with mem­

ory caches. Most parallel computers fit into one of these classes. In particular, most shared memory
machines have caches, whether they are called that or not. Several shared memory machines have
local memories (Cray 2, IBM RP3, BBN Butterfly), in each of these, access to the local memory is
significantly faster than to the shared memory, making these local memories essentially caches.

In a message passing computer, information on remote data is transmitted by sending a mes­
sage. This takes a time 8 + Tn for n words of data, where s is the startup time in seconds, and r
is the transfer rate in seconds per word. Both sand r may depend on the relative position of the
source and destination processors; if there isn't a direct connection between the two processors, a
"multihop" message may be sent with increased cost

In a shared memory computer with a cache, there are several parameters. The most important
for our purposes are the size of the cache C in words, the size of a cache page k, also in words, and
the time to move a page into or out of the cache T, in seconds per page.

www.manaraa.com

78

An additional cost in shared memory computers is the time needed to establish a critical
section or a barrier which insures that data is not used before it is available. This condition is
automatically satisfied by message passing computers, since the message must be waited for before
it can be received. I will ignore both of these costs in this paper. They are less important for
the problems I'm considering here. However, for certain algorithms, such as Gaussian Elimination
partitioned by rows on a ring, this idle time can be significant [1].

1.2. Overview of paper
This paper is divided into four parts. First, parallel programming techniques are discussed,

showing that access to memory (or more abstractly, data objects) is one of the fundamental ideas.
The relationship between shared memory and message passing is discussed.

Second, a discussion of simple, non-adaptive explicit methods is used to illustrate the similar­
ities between message passing and shared memory, and how some of the same analysis can be used
for each.

Next, fully adaptive algorithms are discussed, starting with their representation as a graph
problem, and the parallel algorithm and programming issues that result. These issues include the
granularity of a data item and load balancing costs.

I close with a discussion on how both message passing and shared memory can be considered as
parallel programming analogues of different memory cacheing techniques, and what can be learned
from those techniques.

2. Parallel programming concepts

Much discussion of parallel algorithms assumes either a shared memory or message passing
model. For many algorithms, this is unnecessary; the concepts behind the algorithms are equally
valid for both types of architectures. In this section I will discuss some of the considerations in
creating a parallel algorithm and how they are independent of the parallel architecture.

In any creating a parallel algorithm, there are three basic considerations. First is to identify the
parallelism. This may mean simply decomposing the problem domain of a conventional algorithm
into p sections or it may mean an creating an entirely new algorithm. Other approaches used here
include establishing a queue of tasks to be performed; each processor takes the next task from the
queue.

The second step is to control the access to shared data items. This is essentially a correctness
step; the algorithm must make sure that if a data item being computed by one processor is needed
by another, it is not used before it is ready. It is here that the differences between the various
hardware architectures is most apparent. In a shared memory computer, the most obvious way
to share data is through shared memory, with control of access arrange either through the general
mechanism of critical sections, or the simpler barrier (a barrier is simply a synchronization point
which all processors must reach before any of them can continue). On a message passing computer,
data is shared by explicitly passing it between processors, with access control handled implicitly
by waiting for a message.

However, these are simply different ways of accomplishing the same goal. Which of these is
more efficient, either in terms of programming or speed, depends on both the software and hardware
tools available. Existing programming languages are not suited to the multiple threads of control
present in a parallel algorithm, forcing the programmer to be very careful about the order of access
of data. This suggests a programming method in which the access control is implied, such as
message passing. However, of the existing hardware, the shared memory computers seem fastest,
at least for. moderate numbers of processors. Perhaps a middle ground, such as message passing
software on shared memory hardware, is the best approach. Functional programming languages
are taking an approach similar to this.

www.manaraa.com

79

0 1 0 1

2 3 2 3
o ... p-l

0 1 0 1

2 3 2 3

(a) (b)

Figure 1: Two sample decompositions of a domain. (a)
shows a I-d division with one strip per processor. (b) shows
a 2-d division with multiple pieces per processor. The labels
are the processor numbers.

The third step is to optimize the algorithm for the parallel architecture. This might include
taking advantage of shared memory, or changing algorithm parameters such as buffer sizes or order
of operations to permit the maximum utilization of resources. Here, for example, access control
steps in the algorithm may be identified as unnecessary or multiple copies of data created to reduce
memory contention or message traffic. The point is that these operations are all optimizations, and
are implementation details. As such, they should not be done prematurely nor without good reason.
Programming parallel computers is difficult enough without the added complexity of unnecessary
program optimizations.

3. Explicit non-adaptive algorithms

1 start by considering the case of simple, explicit difference schemes for hyperbolic PDEs with
no mesh adaptivity. 1 will show that there is a close relationship between messages and shared
memory by considering them as different data cacheing schemes.

Explicit methods for hyperbolic equations are relatively simple. Essentially, the approximate
solution at the next time step and at a point is formed by combining values of the solution in a
small region about that point. Written more formally, for a hyperbolic partial differential equation
in 2 space unknowns, and an approximation solution Aij(tk), an explicit method can be written as

where the operator F is a combination of shift operators in space. As a very simple example, a
(unstable) method might have

An important feature of such methods is the locality of reference: the new values of A depend only
on nearby values of A at the previous time step. This is actually a reflection of a fundamental
property of hyperbolic PDEs: causality.

3.1. Decomposition by domain
One of the most obvious approaches to dividing these problems among parallel processors is

to divide the domain into regions, usually regular, then have each processor compute values for
mesh points in its assigned region. Only along the boundaries of the domains do processors need
information from other processors (I am assuming an explicit scheme with a simple stensil).

www.manaraa.com

80

Figure 2: A 2-d mesh connected processor. Labels are the
processors, arrows are the communication links. The labeling
is a 2-d Gray code suitable for hypercubes.

A decomposition can be into 1, 2, or 3-dimensional slices, with one or more slices per pro­
cessor. The choice of the best decomposition for a particular problem and computer depends on
the topology of the computer (even if invisible to the programmer), the communication or memory
access costs, the availability of resources such as memory locks, the need for load balancing, and
the programming complexity.

Some sample decompositions are shown in Figure 1. The decomposition in Figure 1(a) is
among the simplest, and is suitable for almost any parallel architecture. The decomposition in
(b) is more suited for problems with an uneven work load over the domain, as each processor gets
sections of the domain from many places.

In deciding which kind of decomposition to use, we must have a model of the costs of the various
approaches. Since it turns out that, asymptotically in the size of the problem, the communication
costs are negligible, we could choose any decomposition. But in reality, the constants involved in
the communication terms can be large, and for realistic problems, the communication terms can
be or comparable size to the "asymptotically dominant" terms.

3.2. Two examples
In this section I present two examples of estimates of communication costs; one for a mesh con­

nected, message passing computer, and one for a completely connected, shared memory computer
with caches.

3.2.1. Mesh connected message passing
I will consider a 2 dimensional problem, decomposed into either 1-d or 2-d slices, with one slice

per processor. The parallel processor will have direct connections between the necessary neighbors.
The division of processors with a 2-d decomposition of the domain and 16 processors, is shown in
Figure 2.

Using the communication model from the introduction, it is easy to show that the cost for

www.manaraa.com

81

transfering data between neighboring processors is

Cld =2(s + Tn)

C 2d=4(S+ ~)
where the domain is a square of side n, and there are p processors. From this, we can determine a
number offacts. First, the 2-d decomposition, despite its better asymptotic behavior, is not always
the best method. For example, if the ratio (for yIP ;:: 3)

~ > n (1 -~) > n,
r yIP

then Cld < Cu. This in fact is the case for several commercial hypercubes and common values of
n. However, the advantage of the 1-d decomposition is never more than a factor or two over the
2-d decomposition, as can be seen in the ratio

1 S + Tn

2 s+ Tn
yIP

1
;::2'

Thus, everything else being equal, the best single choice of these for a robust program would be
the 2-d decomposition.

3.2.2. Complete connection with cache
The parallel machine for this discussion is a shared memory computer with data caches on

each processor. There is one cache per processor, and all memory references go through the cache.
In this case, the problem is with cache misses; if the cache never misses and the cache fill time

is considered part of the memory cost, then there is no cost except for a barrier every time step to
make sure one step is completed before the next begins. However, these are very big assumptions,
and arranging for optimal cache performance is in many ways similar to optimizing message traffic.

First, consider a 1 dimensional decomposition and a 5 point stensil. If we are to avoid cache
misses, then roughly 2 columns of data must be in the cache at any time. Specifically, if the explicit
algorithm runs down columns of the domain, there must be at least

pages in the cache, with 2 pages read for every k points, assuming one word per mesh point, where
each cache page holds k points. If the cache size C is smaller than this, then cache misses will occur,
and performance will decline. Figure 3(a) shows diagrams this situation. Also notice that the Least
Recently Used (LRU) algorithm will write out pages across rows instead of down columns, thus
increasing the number of cache pages which need to be in the cache to prevent unnecessary cache
misses. If the LRU algorithm is used to decide which cache pages to write out, then roughly 3n/k
pages must fit into the cache.

If instead a 2 dimensional decomposition is used, then only

www.manaraa.com

xix
xix
xix

xolx
xx
xx
xx
xx

82

xx
xx

xox
xx

(a) (b)

Figure 3: Cache pages in use of (a) I-d slicing of the domain
and (b) 2-d slicing. Only one processor is shown. An "0"
marks the page at the center of the stensil, "X"s mark the
pages needed for the current page or subsequent pages.

pages need to be in the cache at anyone time. To compare these, note that if the cache size must
be roughly 2n words in the I-d decomposition and only 2n/vP in the 2-d decomposition.

In both cases, if the cache is too small, the number of cache pages that must be read roughly
doubles. If the cache bandwidth is closely matched to the floating point speed, then this can
effectively halve the speed of the program.

3.2.3. Comments
Despite the similarity between these two results, cache problems are not often considered.

There are a number of possible reasons for this. One is that cache hardware has over the years
been made very fast and efficient. The penalty for a cache miss in not necessarily large. Another
reason is multiprogramming. With many users sharing the same processors, the cache is divided
among them. Not only may the cost of a cache miss be shared among the users, but the available
cache for each user may be only a fraction of available cache. Still, machines such as the Alliant
FX-B, with their restricted cache bandwidth, can often reach their peak speed only with careful
planning of the cache utilization (note that this machine has essentially a single cache shared among
the processors, so the analysis presented here does not directly apply).

Beyond this, however, the considerations are quite similar. We can in fact look on message
passing as predictive paging, made necessary by the expensive communications in the existing
commercial machines. Further, the topology is important only as long as the communication time
is long; this is true for both message passing and shared memory. As message passing matures,
perhaps the (hardware) penalties in its use will be reduced. The various CalTech hypercubes [3] are
examples of low cost message passing parallel computers. As a final comment, in a shared memory
environment with caches, cache coherence is a potential problem; for example, Li [2] encountered
some of these limits in his experiments with a shared memory system built on an Apollo ring.

4. Adaptive algorithms

Adaptive algorithms, at the programming level, are best viewed as graph management prob­
lems. Each node of the graph represents some work to be done, and each edge represents depen­
dencies between the nodes. Dividing such a program up among multiple processors amounts to
mapping the nodes of the graph to the processors.

This mapping raises a number of questions. The obvious ones are how to map the nodes
to preserve data locality. That is, in a message passing computer, how to reduce the number of

www.manaraa.com

83

messages sent and the distance they must travel, and in a shared memory computer, how to reduce
the shared memory traffic by keeping data in local memory or caches.

A less obvious question is what is the best decomposition of the problem into a graph in the
first place. In particular, a large graph, where each node contains a single unknown or mesh point,
may involve a great deal of "pointer chasing" and remote or shared memory references. If each
node of the graph contains more work, then less time will be spent finding work to do. However,
there is a penalty: as the nodes get larger it becomes harder to keep every processor busy. Further,
in making the nodes larger, we may actually introduce more work, taking advantage of the lower
overhead per mesh point. As the nodes get larger, these penalties make the larger nodes less and
less attractive.

We can quantify some of these considerations with a simple example. Consider as a domain a
grid of n x n mesh points, divided into squares of side b. Each of these squares is a node in our
graph, which for the moment will be the trivial representation of a uniform mesh. Each of these
nodes contains a b x b square submesh. By hypothesis, only the boundaries of these nodes must be
transmitted to the neighboring processors. If we are using a message passing computer, the cost
per processor is

4n2
C = -2 (8 + rb),

pb

since there must be n 2/p mesh points per processor and hence n 2/pb2 blocks per processor.
We would like to pick b to minimize this cost. However, it is easy to see that

dC __ 4n2 (~)
db - pb2 b + r ,

which is non-positive. Thus the cost decreases as b increases, with the minimum at the end point
of the valid range of b, that is, at 1 block per processor (b = n/ V'P).

One contending effect is load balancing. If we now take this mesh, and if for some reason a
roughly square area of size R2 = fn 2 , 0 < f < 1 has most of the load (due to mesh refinement,
non-linear solution iterations, etc.), then we want all of the processors to share in this load. If
we use the decomposition in Figure l(b), then we must have the blocks small enough to give each
processor a block in this region of high load. This gives us the condition

For example, if we expect roughly 10% of the region to generate most of the load, then the optimal
b is

What does all this suggest for adaptive algorithms? First, there are a number of contending
effects. Large blocks minimize the data sharing overhead, whether it be message or cache traffic or
accessing a critical section. Small blocks minimize the work load imbalance, modulo the load ex­
pended doing the load balancing. Perhaps the best way to deal with this is to use block algorithms,
where node in the graph is a block of mesh points.

Second, each processor may have read access to the same data. On a local memory computer,
several processors may have read-only copies of the same data. For example, in a sparse matrix
computation, several processors may have copies of the same information on the lists in the sparse
matrix representation. The additional overhead in checking to see if the data is local may be

www.manaraa.com

84

far smaller than always fetching it from global memory or some other processor's cache or local
memory.

As in cacheing, the minimum amount of information which should be sent every time a message
is sent should be proportional to the ratio of startup time to transfer rate. In particular, it takes
only twice as long to send 8/ r words as it takes to send 0 words. Thus, in a message passing
computer with high message startup time, only long messages should be sent. In many cases, by
sending both the requested data and "nearby" data, the number of messages can be reduced. This
is the principle on which conventional single processor cacheing systems depend; parallel algorithms
and machines can take advantage of it as well.

We can also look at current message passing techniques as a form of predictive paging, which in
practice has rarely been worth the additional effort it entails. For parallel algorithms, the delivery
of data predictively should be considered an optimization, albeit a very valuable and often necessary
one.

The point of these comments is to point out that message passing and shared memory are not
that different, either in format or potential performance. The big difference is who is responsible
for managing the access to remote objects, and how is it done.

References

[1) D. J. Baxter and W. D. Gropp, Some Pipe/ined algorithms Jor the solution oj dense linear
systems on hypercubes, 1987. in preparation.

[2) Kai Li, Shared Virtual Memory on Loosely Coupled Multiprocessors, Technical Report YALE/
DCS/RR-492, Yale University, Department of Computer Science, September 1986.

[3) C. L. Seitz, The Cosmic Cube, Communications of the ACM, 28/1 (1985), pp. 22-33.

www.manaraa.com

SYSTOLIC ALGORITHMS FOR THE PARALLEL SOLUTION OF

DENSE SYMMETRIC POSITIVE-DEFINITE TOEPLITZ SYSTEMS

ILSE C.F. IPSEN

Department of Computer Science

Yale University

P.O. Box 2158, Yale Station

New Haven, CT 06520, USA

Abstract. The most popular method for the solution of linear systems of equations with

Toeplitz coefficient matrix on a single processor is Levinson's algorithm, whose intermediate vectors

form the Cholesky factor of the inverse of the Toeplitz matrix. However, Levinson's method is not

amenable to efficient parallel implementation. In contrast, use of the Schur algorithm, whose

intermediate vectors form the Cholesky factor of the Toeplitz matrix proper, makes it possible to

perform the entire solution procedure on one processor array in time linear in the order of the

matrix.

By means of the Levinson recursions we will show that all three phases of the Toeplitz system

solution process: factorisation, forward elimination and backsubstitution, can be based on Schur

recursions. This increased exploitation of the Toeplitz structure then leads to more efficient parallel

implementations on systolic arrays.

Introduction

The aim of this paper is to discuss parallel methods for the solution of linear systems of

equations

Tn x = f

whose coefficient matrices Tn are dense symmetric positive-definite Toeplitz matrices.

A symmetric Toeplitz matrix Tn = (tkdo$k,I:<:;n of order n + 1 is a matrix whose elements are

constant along each diagonal, tkl = tlk_llo The solution of a general, n x n system of equations by

www.manaraa.com

86

a direct method requires O(n3) operations. Since a n X n Toeplitz matrix is characterised by O(n)

rather than O(n2) parameters efficient algorithms for the solution of Toeplitz systems exhibit an

operation count that is considerably smaller: the classical Levinson and Schur algorithms require

O(n2) operations [1, 14, 15, 18] while the doubling algorithms require O(nlog2 n), cf. the early

references [2,9]. A thorough treatment of Toeplitz matrices is given in [10, 11], and a brief summary

can be found in [17]. Numerical aspects of algorithms for Toeplitz matrices are reviewed in [5].

Development of parallel implementations for the solution of dense Toeplitz systems was moti­

vated by the need to execute certain signal processing tasks in real-time. The preferred architectures

are systolic arrays, special-purpose devices built with Very Large Scale Integrated (VLSI) circuit

technology [13]. Systolic arrays are homogeneous networks of tightly coupled, highly synchronised,

simple processors that essentially operate in SIMD (Single Instruction Multiple Data stream) mode.

Due to the repetitiveness of the computations and the regularity of the data dependencies systolic

implementations can be described by means of linear transformations: the processor in which a

quantity ri,j is computed as well as the time of its computation is expressed as a linear function in

the indices i and j [7, 8]. To keep the approach simple and intuitive, implementation details will

be omitted in this paper, they can be found in [7, 8].

Three classes of systolic arrays will be presented whose efficiency improves with increased

exploitation of the Toeplitz structure in various phases of the solution process.

The classical method of choice for solving a n X n symmetric positive-definite Toeplitz system

on a single processor is the Levinson algorithm [14]. The intermediate vectors generated by the

Levinson algorithm form the Cholesky factor of the inverse of the Toeplitz matrix. Due to a

sequence of n inner products, however, the lower bound of the parallel solution time on n processors

is O(n log n).

The second classical method is the Schur algorithm [1, 15, 18]; its intermediate vectors form

the Cholesky factor of the Toeplitz matrix. Although its operation count is fifty percent higher

than that of Levinson's method, it is more amenable to parallel implementation: an array of O(n)

processors can determine the Cholesky factor of an order-n Toeplitz matrix in time O(n) [3, 4, 6,

7, 8, 12, 16].

The solution to the Toeplitz system can be found by performing forward elimination with the

transpose of the Cholesky factor and subsequent backsubstitution involving the Cholesky factor.

www.manaraa.com

87

This necessitates the additional use of arrays for triangular system solution and intermediate storage

of order O(n2) for the Cholesky factor during forward elimination [12, 16].

Instead of performing the usual forward elimination, recursions similar to the 'Schur recursions'

in the factorisation may can be employed to modify the right-hand side vector, thus making it

possible to employ the same type of array for factorisation and forward elimination. Intermediate

storage of the Cholesky factor till the start of backsubstitution may be avoided by re-generating it

on the fly [3,4].

A final improvement in efficiency is achieved by also performing back substitution by Schur

recursions. In this case it is possible to perform the whole solution process on one n-processor

array in time O(n) [7, 8].

Since it appears impossible to conceive systolic implementations of doubling algorihms, it can

be concluded that the most efficient method hitherto to solve Toeplitz systems on systolic arrays

is one that makes maximum use of Schur recursions.

Notation

A symmetric Toeplitz matrix of order n + 1 will be denoted by Tn, where

and the sequence t; ... tk of Toeplitz matrix elements for i :::; k will be denoted by ti;k. Frequent use

will be made of the fact that the first and last columns of Tn have the respective representations

to:n and J to:n where J = (en el eo) represents the 'exchange' matrix with ones on the

antidiagonal, and e; is a (n + 1) x 1 vector with a one in position i and zeros everywhere else,

o :::; i :::; n. At last, Ok stands for the k X 1 vector consisting of k zero elements; when k = 0 it is

the empty vector.

A symmetric Toeplitz matrix Tn is centro-symmetric, that is

www.manaraa.com

88

Direct methods with operation count O(n2) or less for the solution of dense Toeplitz systems of

order n exploit this property and the resulting recursive nesting of Toeplitz matrices:

The system Tnx = f can be solved by recursively solving a system involving Tn-I.

The Levinson Algorithm

Levinson's algorithm computes the Cholesky factorisation of the inverse of a n x n Toeplitz

matrices with 0 (n 2) operations; the following derivation is partly based on the one given by Trench

in [19J. Suppose the Cholesky factor Ln of T;l = L~ D;;l Ln is known, where Ln is unit lower

triangular and Dn is diagonal (as Tn is symmetric positive-definite the diagonal elements of Dn are

strictly positive). The Toeplitz matrix Tn+! of next higher order can be partitioned into a 2 x 2

block matrix as

t = Jtl:n+I = (tn+l . . . tl).

Solving

where In+! is the identity matrix of order n + 1, results in a 2 x 2 block partitioning for T;:';l

Setting .p = _T;lt yields

(1)

Thus, (.pT 1) is the trailing row of the Cholesky factor Ln+l of T;:';l. It remains to show that .p

and d can be computed in O(n) steps.

www.manaraa.com

89

To this end, suppose that the Cholesky factorisation of T;;l is already known:

where do = to and .pn is a n X 1 vector. The symmetry-centro symmetry of Toeplitz matrices

implies for the inverse of the next higher-order matrix Tn+1 that T;;)l = JT;;)l J, or in block form

(
T;;l + .pn+1.p~+1/dn+1

.p~+1/dn+1

.pn+1/dn+1) (l/dn+1 .p~+lJ/dn+1)
l/dn+1 - J.pn+1/dn+1 T;;l + J.pn+l.p~+1J/dn+1 .

This gives for the trailing row .pn+1 = _T;;lJtl:n+1 of Ln+1 the block form

Denoting the term in brackets by

and observing that .pn = -T;!l Jtt:n gives

(2)

(3)

Consequently, with .po the empty vector, the trailing row of Ln+l can be obtained from the

trailing row of Ln via

(4)

Remembering that d;;l is the bottom right element of T;;l and Pn+1 is the leading element of .pn+1

one gets with (2) for the bottom right element of T;;)l

do = to· (5)

Note that the original paper by Levinson [14] does not contain the simple recursive computation

of dn+1 from dn and Pn+1'

www.manaraa.com

90

The Levinson Algorithm

The Levinson algorithm computes the lower triangular Cholesky factor Ln of T;;1 with kth row

given by (.pk,O .pk,k-1 O~_k).

do = to
k-1

1:::: k :::: n, Pk = -(tk + L .pk-1,j-1t j)/dk-b dk = dk- 1(1- pD, .pk,O = Pk
j=1

.pk-1,k-2)

.pk-1,O

The reason why Levinson's algorithm has little potential for parallelisation is that the vector

.pn enters into the computation of .pn+l from both ends: in a linear combination of .pn and J .pn.

Even if one were to maintain two separate copies, .pn and J.pn, the weight Pn+l in this combination

would still depend on the entire vector .pn. Thus, it is not possible to pipeline successive recursions,

and the lower bound on the time of a n X n parallel Cholesky factorisation of is 0 (n log n).

The Schur AIgorithlTI

Since the inner-product (3) in the formation of Pn+l is the culprit for the poor parallel per­

formance of Levinson's algorithm one could try to reformulate the algorithm so as to obviate the

need for an explicit inner-product computation. This is accomplished by observing that (1) implies

dn = (.p~ 1) Jto:n, and substituting this into (3) leads to

(.p~ 1) t1:n+1
Pn+l = - (.p~ 1) J to:n .

Thus, the coefficient Pn+l is the ratio of two quantities that are obtained by multiplying (.p~ 1)

and its reverse by a column of the Toeplitz matrix. This is the basis for the so-called Schur algorithm

[1, 15, 18], it avoids the inner-product by recursively 'updating' matrix-vector products involving

the Toeplitz matrix, so that Pn+l can be formed as the ratio of two vector elements.

Unlike the Levinson algorithm which determines the Cholesky factor of the inverse, the Schur

algorithm determines the Cholesky decomposition of the matrix proper. If the result of Levinson's

www.manaraa.com

91

method is T;;l = L~D;;lLn, where Ln is lower triangular, then the uniqueness of the Cholesky

decomposition implies that LnTn = DnL;;T must be a scaled version of the upper triangular

Cholesky factor Un of Tn: Tn = U;: DnUn. Therefore it follows that ((.pr 1) O~_k) Tn is the

kth row of the scaled Cholesky factor DnUn of Tn. Let Or represent a row vector of k zeros, then

the kth row of DnUn has the form

= (Or dk IIk,O ... IIk,n-k-l), (6)

where * denotes unimportant terms and from (1)

(7)

If it is possible to compute the non-zero elements (dk IIk,O .. . IIk,n-k-l) of the kth row of

DnUn with O(n - k) operations then the Cholesky factorisation Tn = U;: DnUn can be computed

with O(n2) operations. It is now shown how to compute the vector of IIk,j as a linear combination

of two vectors by making use of the Levinson recursion as follows:

With (3), (7) and (6) the first summand evaluates to

(0 (.pr 1)

www.manaraa.com

92

The second summand amounts to

= (dk Or I-'k,O . . . I-'k,n-k-l).

where the leading element of the non-zero part is I-'k,O = -PH1dk.

Forming the linear combination of the two summands yields

= (Or+l dH1 VH1,O .. . VH1,n-(k+l)-1)

where due to (5) dk+l = dk(l - Pi+l). Similarly, determination of the new vector elements I-'Hl,i

is accomplished using the row-reversed version of (4)

(('if;r+l 1) J O~-k_l) T,..

= (('if;r 1)J 0 O~_k_tl T,.. + PHd 0 ('if;r 1) O~_k_l) T,..

= (dk Or I-'k,o ... I-'k,n-k-l) + Pk+l (-PH1dk or dk Vk,O ... Vk,n-k-2)

= (dk+l Or+l I-'k+l,O .. . I-'k,n-(k+l)-l) ,

where I-'Hl,O = -PH2 dk+l·

The Schur Algorithm

The Schur algorithm computes the scaled Cholesky factor DnU,.. of Tn with kth row given by

(Or dk Vk,O .. . Vk,,..-k-l).

do = to

(
VOO

1-'0,0

1::; k::; n,

VO,,..-l) = (t1 ... tn)

1-'0,,..-1 t1· .. t,..

Pk = -l-'k-l,O/dk- 1, dk = dk-l(l - p~)

(
Vk 0 • • • Vk n-k-l) (1
I-'k,o . . . I-'k,n-k-1 - Pk

Pk) (Vk-l,O

1 I-'k-1,l

Vk-1,n-(k-l)-2) .

I-'k-l,n-(k-1)-1

www.manaraa.com

93

First Class of Systolic Implementations

Assume that a linear array of n + 1 processors, numbered 0 to n, is available for the execution

of the Schur algorithm on matrix Tn of order n + 1. A time step for the array is defined as a time

interval long enough to accommodate the operations

Pk = -ilk-1,O/dk- 1, dk = dk-1(1- pD
(Vk,j) (1 Pk) (Vk-1,j)

ilk,j Pk 1 ilk-1,j+1

Different schedules and processor assignments for individual operations can be derived by applying

appropriate linear transformations to the indices of the computed quantities: the pair (Vk,j ilk,j)

is computed in processor

at time

7 = (k j) C:) + 73·

The partial order of computations is preserved by observing that Vk-1,j must be computed before

Vk,j, and ilk-1,j+1 before ilk,j. That is, the time function must satisfy

-71 < 0, -71 + 72 < o.

In general, if a quantity with index (i,j) depends on a quantity with index (k, I) the latter must

be available before the former can be determined, in other words [8]

To make sure that one processor does not have to perform two different operations at the same

time the determinant of the matrix

should be non-zero [8]' 7111"2 - 7211"1 # o.

The first systolic array presented in [12] is based on the following linear transformations. In

step k of the Schur algorithm, 0 ~ k ~ n, (Vk,j ilk,j) is computed in processor 11" at time 7 :::0: 1

where

O~J·~n-k-1.

www.manaraa.com

94

The parameters Pk and dk are assumed to be associated with index (k,O) and thus determined in

processor 11" = 0 at time T = k + 1. Initially processor j is loaded with matrix element tj.

The execution of the Schur algorithm requires n + 1 steps. In each step processor 0 computes

a new P and broadcasts it to all other processors, so that each step produces a new row of the

Cholesky factor. The components of the v-vectors remain in their respective processors (Vk,; resides

in processor j for all k) while the J.I-vector is shifted left by one in each step (J.lk-1,;+1 is computed

in processor j + 1 before being sent to processor j for the computation of J.lk,i)' Note that in step k

there are k idle processors, and in order to offload a row of the Cholesky factor each processor must

be able to perform external I/O.

To avoid difficulties, such as synchronisation delays and long wires, associated with a global

communication scheme like broadcasting a 'pipelined' array is proposed in [12, 16]. The processor

function (11"1 11"2 11"3) is the same as before but the time function has changed to

Thus, Pk and dk are computed at time T = 2k + 1 in processor 0 and Pk is then sent to processor 1.

In the next step, at T = 2k+2, (J.lk,l Vk,l) can be computed in processor 1, Pk can be transmitted

to processor 2 and J.lk,l left to processor 1 so that at T = 2k + 3 the computation of Pk+1 can start.

Thus, successive iterations are two time steps apart. Because Pn and dn are computed at T = 2n + 1

the computation time for the Schur algorithm comes to 2{n + 1). The replacement of broadcasting

by forwarding (or pipelining) of P from processor to processor results in communication that takes

place exclusively on a nearest neighbour basis. All other features are the same as in the first array.

In order to solve the system Tnx = f three possibilities are discussed in [12]:

1. forward elimination and backsubstitution involving the Cholesky factors Un, Dn and U'!: of Tn

2. computation of the Levinson vectors I/;k using the Pk from the Schur algorithm, and subsequent

matrix vector multiplications involving Ln, Dn, and L~ (the I/;k constitute the rows of the

Cholesky factor Ln of T; 1)

3. explicit computation of T;l in form of the Gohberg-Semencul formula and subsequent matrix­

vector multiplications by means of FFTs (the Gohberg-Semencul formula represents the inverse

of a Toeplitz matrix as a sum of products of triangular Toeplitz matrices that consist of the

elements of .pn).

www.manaraa.com

95

Since details for parallel implementations of the latter two methods are not given and their

data and control flows are likely to be rather complex only the first method will be considered.

Forward Elimination with Cholesky Factor

Forward elimination solves the lower triangular system (DnUnV h = I, the elements of the solution

vector h are given by hk = hk,k.

ho,o = lo/do

1 :":: k :":: n, hk,-l = 0

1:":: j :":: k - 1, hk,j = hk,j-l + Vj-l,k-jhj,j

hk,k = Uk - hk,k-l)/dk •

In order to overlap forward elimination as much as possible with factorisation a second linear

array with n + 1 processors is employed, and it is assumed that each processor in the elimination

array is physically connected to the corresponding processor in the factorisation array. Since a

matrix element Vj-l,k-j is computed in processor k - j at time T = k + j - 2 in the factorisation

array it may be used at the next time step in processor k - j of the forward elimination array.

Hence, the forward elimination array has the processor function

and essentially the same time function as the factorisation array (the time functions just differ by

one in their displacement Ta):

Note that the elements of the h-vector are shifted one processor to the right each step. At time

T = 3k + 2, Ik and d k have to be input to processor 0 of the elimination array so that hk = hk,k

can be computed there. Thus, forward elimination is completed after the computation of hn at

time 3n + 3.

www.manaraa.com

96

Backsubstitution with Cholesky Factor

Backsubstitution determines the solution x, with elements Xk = Xk,k, of the upper triangular system

DnUnx = Dnh .

Xn,n = dnhn/dn

n - 1 ~ k ~ 0, Xk,n+l = 0

n ~ j ~ k + 1, xk,i = xk,i+l + vk,i-k-1Xi,i

As backsubstitution can only start once forward elimination is completely finished, the forward

elimination array may be re-used. Its time and processor functions are now

If processor 0 has retained all hk and dk from the forward elimination phase then the solution

element Xk = Xk,k can be determined in processor 0 at time T = 5n + 3 - 2k. Note that solution

of a Toeplitz system of order n in such a manner requires time O(5n) on 2n processors plus O(n2)

storage to store the matrix DnUn during the forward elimination phase.

Forward Elimination by Schur Recursions

The second step, the modification of the right-hand side vector I in the system Tnx = I can

be improved for a systolic implementation by applying the same operations to I as were applied to

Tn in the Schur algorithm: after having determined LnTn = DnUn one now determines 9 = Lnl so

processors perform the same type of operations during facorisation and forward elimination, and

only one type of array is needed for both phases.

To derive the computational steps for 9 = Lnl we extend the vector I to a Toeplitz matrix Fn

with I as its. first column:

10 h

h 10

In

In

10 h

h 10

www.manaraa.com

97

From the computation of LnFn one can derive recursions for Lnf by means of the following obser­

vation. The kth element of 9 = Lnf is

o:s; k:S; n,

while the kth row of LnFn is

T T T (Fk ((.pI 1) 0n_k) Fn = ((.pk 1) 0n_k) *

= (* (.pI 1) Fk)

whose kth element is the trailing element of (.pI 1) Fk which is equal to (.pI 1) J fO:k. Hence,

the trailing element of (.pI 1) J Fk in

is 9k = (.pI 1) fO:k.

Consequently, the sought vector 9 is a product of f with the matrix whose rows contain the

reverse Levinson vectors, and 9 can be computed by the following Schur-like recursions involving

the upper triangular part of this matrix.

Denote elements in position k :s; i :s; n of

by

(ak,k ... ak,n) = ((.pI 1) fO:k (.pI 1)Jed

and elements in position k :s; i :s; n of

Fn-k-2

*
1) Jfn:n-k)

by

Uk,k ... (3k,n) = ((.pI 1)Jfo:k (.pI 1)Dk (.pI 1)Jfn:n-k). (8)

www.manaraa.com

98

Now Cik,k = gk is the kth element of g and the recursive computation of Cik+I,k+I = gk+l from

Cik,' and 13k,. can be derived by means of the Levinson recursions (4) as follows

Ignoring elements in positions 0 through k on both sides of the equation gives

(Cik+l,k+l Cik+I,n) = (Cik,k+I Cik,n) + Pk+l (f3k,k

since the second summand is equal to

t[k
(0 (

10

1) O~_k_l) I::k = «.pf 1)/l:k

Comparing elements in positions k + 1 through n with (8) one notes that

The second vector consisting of elements f3k+I,., k + 1 ::; i ::; n, can be updated similarly.

Forward Elimination by Schur Recursions

The Schur recursions determine g = Lnl where gk = Cik,k.

(
Cioo

130,0

Cio,n) (10
f3o,n - 10

In)
In

Cik,n) (1 Pk)

f3k,n Pk 1
1::; k::; n,

Second Class of Systolic Implementations

(
Cik-l k

f3k-l,k-l

Cik-l n)

f3k-l,n-l

Again, the same assumptions as before hold, and the array from [3, 4] is presented that performs

both phases, factorisation and forward elimination, by Schur recursions.

The pipelined version of the factorisation phase is performed as before. As for forward elimi­

nation, the index structure of its equations is adapted to that of the factorisation by performing a

linear transformation on each index (k j):

(k j) C ~l) =(k j-k),

www.manaraa.com

resulting in

(
ao,o

130,0

ao,n) (fO
f3o,n - fo

1 :$ k :$ n,

fn)
fn

ak,n-k)

f3k,n-k

99

Pk) (ak-l,l

1 f3k-l,O

ak-l,n-(k-l))

f3k-l,n-(k-l)+l
If a second (n + 1)-processor array is available for forward elimination with the same time and

processor functions as those of the factorisation array, then factorisation and forward elimination

can be performed simultaneously. Processor 0 of the forward elimination array is assumed to be

connected to processor 0 of the factorisation array so the latter can forward the P k to the former.

When pipelining is used, processor 0 of the elimination array receives Pk and forwards it

directly to the other processors in the array so pairs (ak,j f3k,j) are computed in processor j at

time 2k+ j+ 1. Initially, processor j is loaded with the right-hand element fj. Element gk = ak,O is

computed in processor 0 at time T = 2k+ 1 and transmitted to processor 0 of the factorisation array

where it is retained till the start of the backsubstitution phase. Thus, factorisation and forward

elimination can be executed on 2(n+ 1) processors in 2(n+ 1) time steps if communication proceeds

on a nearest neighbour basis.

In order to avoid the O(n2) storage needed to store DnUn till the onset of backsubstitution

only its last column and the parameters Pk are retained from which DnUn can be re-generated by

the Schur recursions.

The Reverse Version of the Schur Algorithm

The reverse version of Schur algorithm computes the scaled Cholesky factor DnUn of Tn with kth

row given by (Or dk Ilk ,0 IIk,n-k-l) from Pk, 1 :$ k :$ n, and the last column

(VO,n-l Vl,n-2 IIn-l,O dn)T

of DnUn, whereby 1I0,n-l = tn.

n - 1 ~ k ~ 0,

(
Ilk ° Ilk n-k-2) 1 (-1

J.lk,l J.lk,n-k-l - P%+l - 1 PHl

PH1) (lIk+l'O

-1 J.lk+l,O

dk = dk+l/(l - p%+l)' J.lk,O = -dkPk+l·

IIk+l,n-(Hl)-l)

J.lHl,n-(k+l)-l

www.manaraa.com

100

If processor 0 in the factorisation array has retained all Pk and dn, and processor n - k has

received component "k,n-k-l of the last column from its left neighbour then the re-generation of

DnUn in the factorisation array can start at time 2{n + 1). The processor and time functions are

0), h T2 Ta)={-2 -1 4n+2),

so that (lIk,i J.Lk,i+l) is computed in processor j at time 4n + 2 - 2k - j, and dk in processor 0

at time T = 4n + 2 - 2k. Processor 0 stores the dk for the backsubstitution phase. Note that the

components of the II-vector stay put in a processor (lIk.i resides in processor j for all k) while the

components of the J.L-vector are shifted one processor to the right in each step.

Suppose a third array for backsubstitution is available whose processors are connected to the

corresponding processors of the factorisation array. Since IIk,i-k-l is computed in processor j - k-1

at time T = 4n + 3 - k - j it can be used at time 4n + 5 in processor j - k of the backsubstitution

array. With processor and time functions

Xi,k can be computed in processor j - k at time 4n + 5 - k. Since processor 0 has retained dk from

the previous re-generation phase and gk is computed early enough in processor 0 of the forward

elimination array (at time T = 2k + 1), element Xk = Xk,k of the solution vector can be computed

in processor 0 at time 4n + 5 - 2k. The whole computation is completed in 4n + 6 time steps. Note

that during step k of the factorisation and forward elimination phase there are 2k idle processors.

Therefore, 6n processors can compute the solution to a n X n Toeplitz system in time O{4n)

only relying on nearest neighbour computation, however the storage in at least one processor must

be proportional to the problem size O{n).

Backsubstitution

The last step is normally solved by backsubstitution x = L~D;;lg without making any use of

the Toeplitz structure of the original system. A new approach that uses the Schur recursions also

for the last step was derived in [7] and can be related to the Levinson recursions as follows.

Remember that { (.p~-k 1) Or)' is the kth column of L~, that gk = O/k,k is the kth element

of the vector g, and that dk is the kth diagonal element of Dn , 0 :s; k:S; n. With the abbreviation

www.manaraa.com

101

Ik = gk/dk, 0 :::; k :::; n, one can express the solution vector as a linear combination of the columns

of L~:

Define the partial sums

(
.pn_k_l)

x(n-k-l) = x(n-k) + In-k-l 1 ,

OHl

0:::; k:::; n -1,

so that x(O) = x. It will now be shown by induction that for 1 :::; k :::; n

(i) For k = 0 it follows from the Levinson recursion (4) that

.'"' ~ "" (~") ~"" { (.~_,) + ,. (J .~_,))

C:J + (::") +'"." (.~,) +,"." (N~-') ·
where €n,n = In = gn/dn and '1n,n = Pnln·

(ii) Assume the statement is true for k 2': O.

(iii) Using the induction hypothesis (ii) for x(n-k) in

(
.pn_k-l)

x(n-k-l) = x(n-k) + In-k-l 1

Ok+!

www.manaraa.com

102

and making use of the Levinson recursion in each of the two sums of (9) results in

t En-k,n-; (::~::: 1 = t En-k,n-; 1 (Ok_;O+1 1 + Pn-k-1 (Ok-;+l 11
;=0 ;=0 ,pn-k-2 J ,pn-k-2

0;+1
0;+1 0;+1

= En-k,n 1 (Ok; 1 1 + Pn-k-1 (Ok;' 11 + ~ En-k,n-,-l I (Ok;, 1 + Pn-k-1 (Ok;' 11
,pn-k-2 J,pn-k-2 ,=0 ,pn-k-2 J,pn-k-2

o 0 0,+2 0,+2

for the first sum and

.pn-k-2 J .pn-k-2
(

.pn-k-1) {(0] (1]}
"In-k-1 Ok~l = "In-k-1 1 + Pn-k-1 0 0

Ok+1 Ok+1

Collecting corresponding terms gives the following expression for x(n-k-1)

(

ok-i 1 (Ok-i] ,1.:-1 0 k-l Pn-k-lf"n-k,n.-j-l

+ ~ (€n-k,n-i-l + Pn-k-l'1n-k,n-j)1/Jrl-k-2 + ~ ('1n-k,n-j-l + Pn-k-l€n-k,n-j-d J"pn-k-2

.1=0 Pn-k-l'1n-k,n-j J=O 0

0j+l 0i+l

(
0 1 Pn-k-17n-k-l

("'1n-.l.:-l + Pn-k-l'7n-k n-k)1/Jn-k-2
+ '+ ((~n-k,n-k + pn-k-l'ln-k-.)J.pn-k-2)

In-k-l + Pn-k-l'1n-k,n-k
0,1.:+2

Ok+l

www.manaraa.com

103

which can be written as

k+l k+l
(

0"'-k-1 1 ('1n_k_~,n-k-'1
€n-k-l,n-k-l .

. + (
OJ-k+1 1 (0j_k+1 1

+ L €n-k-1,n-j..pn-k-2 + L '1n-k-1.n- j J..pn-k-2 ,
: TJn-k-l,n]=0 J=O

OJ+1 OJ+1
€n-k-l,n 0n-k-l

where

€n-k-l,n-Ic

'1n-k-l,n-k

pn-k-l) ("fn-k-l

€n-k-l,n-l

'1n-k-l,n-l

En-k-l,n)

'1n-k-l,n

En-k,n-l

1 '1n-k,n-k '1n-k,n-k+l '1n-k,n

This completes the induction.

The backsubstitution part using the Schur recursions computes the E- and '1-vectors and can

be formulated as follows.

Backsubstitution by Schur Recursions

The Schur recursions determine the vector x = L~D;;19 with its kth element given by Xk.

(
En-Ie n-Ie f n -k,n-k+l

1:S: k:S: n,
'1n-k,n-k '1n-k,n-k+l

(
1 pn-k) (9n-k/ dn - k

Pn-k 1 '1n-(k-l),n-(k-l)

o :s: j :s: n, Xj = EO,j + '1o,j·

fn-k,n-l En-k,n)

'1n-k,n

En-(k-l),n-(k-l)

'1n-(k-l),n-(k-l)+l

Third Class of Systolic Implementations

En-(k-l),n-l

'1n-(k-l),n

The computation of all phases, factorisation, forward elimination and backsubstitution, by

Schur recursions makes it possible to employ only one array for all three phases. The corresponding

array in [7, 8] is the most efficient of the three types of designs presented, and can be derived as

follows (the processor and time functions here differ from the ones in [7, 8] in a few small details

that do not affect the asymptotic computation time).

www.manaraa.com

104

To fit all three phases on one array it is convenient to adapt the index structure of the factori­

sation phase to that of forward elimination by transforming each index (k j) in the factorisation

to

(k j)C ~)=(k k+j).

The transformed factorisation phase is thus expressed as:

do = to

(
1100

Ilo,o
1:,,:: k:":: n,

(
Ilk k

Ilk,k

The time and processor functions are chosen to be

(
IIk-1,k-1

Ilk-1,k

IIk-1,n-2) .

Ilk-1,n-1

(11"1 11"2 11"3) = (1 0 0), (T1 T2 T3) = (1 2) .

Thus, all matrix elements are input to the same processor: tk is input to processor 0 at time

T = k + 1; and (lIk,j Ilk,j) are determined in processor k at time T = k + j + 2. The values of Pk

and dk are computed along with IIk,k, in processor k at time 2k + 2, and remain in that processor

throughout factorisation and forward elimination. Notice that the components of the II-vector stay

put in the processor while the components of the Il-vector are shifted one processor to the left. The

last quantities Pn and dn are computed in processor n at time 2(n + 1), so the computation of the

factorisation requires 2n + 3 steps.

Since the factorisation has the same structure as the forward elimination phase, and the forward

elimination phase involves the Pk which are now computed in different processors the two phases

may be overlapped, thereby eliminating the processor idle time of the previous designs. Observe

that the last matrix element tn is input to processor 0 at T = n + 2 so the first element of the

right-hand side vector /0 can be input to processor 0 at time n + 3. In general, all right-hand

side elements are input to the same processor as the matrix elements: /j is input to processor 0

at time n + j + 3, and time and processor functions (except for the time displacement T3) are the

same as before:

(11"1 11"2 11"3) = (1 0 0), (T1 T2 T3) = (1 n+ 3).

www.manaraa.com

105

The pair (lY.k,i f3k,i) is determined in processor k at time T = k+ j + n+3, and the components of

both IY.- and f3-vectors experience a shift to the left neighbouring processor after their computation.

Element 9k = IY.k,k is computed in processor k at time 2k + n + 3, and forward elimination is

completed at time 3n + 4.

To keep communication on a nearest neighbour basis, the linear array is folded together so

that processors k and n - k are situated across from each other. After completion of the forward

elimination phase processors k and n - k can then exchange their values of p, d and 9 so that

processor k ends up with Pn-k, dn-k and 9n-k. For simplicity each index (k j) of backsubstitution

is transformed to

(k j) (-01 01) +(n O)=(n-k j),

resulting in

(tk,n-k fk,n-k+l (k,n-l
tkn) 1::; k::; n,

'1k,n-k '1k,n-k+l '1k,n-l '1k,n

(pn
1
_k

pn
1
-k) (9n-k/dn-k tk-l,n-(k-l) fk-l,n-l tk~l,n)

'1k-l,n-(k-l) '1k-l,n-(k-l)+l '1k-l,n

0::; j ::; n, xi = tn,i + 'In';'

With processor and time functions

(7ft 7f2 7fa) = (1 0 0), (Tl T2 TS) = (2 1 2n + 4)

the pair (tk,i '1k,i) is computed on processor k at time T = 2k+j+2n+4. In particular, component

Xk = tn,k + '1n,k of the solution vector is computed in processor n at time T = 4(n + 1) + k. Hence

backsubstitution is completed at time 5n + 6.

With the above scheme, a Toeplitz system of order n can be solved in time O(5n) on n

processors with nearest neighbour commuincation. Each processor requires only a constant amount

of storage. External input takes place on the first processor and external output on the last. As

shown in [7, 8] the solution processes for several different problems with different right-hand sides

can be overlapped and the solution to a new problem can be obtained every n steps. Furthermore,

as shown in [8], the above array belongs to the class of n-processor arrays that solve Toeplitz

www.manaraa.com

106

systems faster than any other array with linear processor and time function, and I/O restricted to

the boundary processors.

Acknowledgements

The work presented in this paper was supported by the Office of Naval Research under con­

tracts N000014-86-K-031O and N00014-85-K-0461, and by the Army Research Office under contract

DAAL03-86-K-0158.

www.manaraa.com

107

References

[1] Bareiss, E.H., Numerical Solution of Linear Equations with Toeplitz and Vector Toeplitz Ma-

trices, Numer. Math., 13 (1969), pp. 404-24.

[2] Brent, R.P., Gustavson, F.G. and Yun, D.Y.Y., Fast Solution of Toeplitz Systems of Equations

and Computation of Pade Approximants, J. Algorithms, 1 (1980), pp. 159-95.

[3] Brent, R.P., Kung, H.T. and Luk, F.T., Some Linear-Time Algorithms for Systolic Arrays,

Proc. IFIP 9th World Computer Congress, North Holland, Amsterdam, 1983, pp.

865-76.
[4] Brent, R.P. and Luk, F.T., A Systolic Array for the Linear-Time Solution of Toeplitz Systems

of Equations, J. VLSI and Computer Systems, 1 (1983), pp. 1-22.
[5] Bunch, J.R., Stability of Methods for Solving Toeplitz Systems of Equations, SIAM J. Sci. Stat.

Comput., 6 (1985), pp. 349-64.
[6] Delosme, J .-M., Algorithms for Finite Shift-Rank Processes, Ph.D. Thesis, Dept of Electrical

Engineering, Stanford University, 1982.
[7] Delosme, J .-M. and Ipsen, I.C.F., Parallel Solution of Symmetric Positive Definite Systems

[8]
with Hyperbolic Rotations, Linear Algebra and its Applications, 77 (1986), pp. 75-111.

----, Efficient Systolic Arrays for the Solution of Toeplitz Systems: An Illustration of a

Methodology for the Construction of Systolic Architectures in VLSI, Systolic Arrays,

Adam Hilger, 1987, pp. 37-46.
[9] Delosme, J .-M. and Morf, M., Normalized Doubling Algorithms for Finite Shift-Rank

Processes, Proc. 20th IEEE Conference on Decision and Control, 1981, pp. 246-8.
[10] Grenander, U. and Szego, G., Toeplitz Forms and their Applications, University of California

Press, 1958.

[11] Iohvidov, I.S., Hankel and Toeplitz Matrices and Forms, Birkhauser, 1982.
[12] Kung, S.-Y. and Hu, Y.H., A Highly Concurrent Algorithm and Pipelined Architecture for

Solving Toeplitz Systems, IEEE Trans. Acoustics, Speech, and Signal Processing,

ASSP-31 (1983), pp. 66-76.

[13] Kung, H.T. and Leiserson, C.E., Systolic Arrays (for VLSI), Sparse Matrix Proceedings, SIAM,

Philadelphia, PA, 1978, pp. 256-82.
[14] Levinson, N., The Wiener RMS (Root-Mean-Square) Error Criterion in Filter Design and

Prediction, J. Math. Phys., 25 (1947)' pp. 261-78.
[15] Morf, M., Fast Algorithms for Multivariable Systems, Ph.D. Thesis, Dept of Electrical

Engineering, Stanford University, 1974.

www.manaraa.com

108

[16] Nash, J .G., Hansen, S. and Nudd, G.R., VLSI Processor Array for Matrix Manipulation, CMU

Conference on VLSI Systems and Computations, Computer Science Press, 1981, pp.

367-73.
[17] Roebuck, P.A. and Barnett, S., A Survey of Toeplitz and Related Matrices, Int. J. Systems

Sci., 9 (1978), pp. 921-34.

[18] Schur, I., Ueber Potenzreihen die im Innern des Einheitskreises Beschraenkt Sind, J. Reine

Angewandte Mathematik, 147(1917), pp. 205-32.

[19] Trench, W.F., An Algorithm for The Inversion of Finite Toeplitz Matrices, J. Soc. Indust.

Appl. Math., 12 (1964), pp. 515-22.

www.manaraa.com

ENSEMBLE ARCHITECTURES AND THEIR ALGORITHMS: AN OVERVIEW

S. Lennart Johnsson
Departments of Computer Science

and Electrical Engineering
Yale University

Abstract

During recent years the number of commercially available parallel computer architectures have increased
dramatically. The number of processors in these systems vary from a few up to 64k processors for the
Connection Machine. In this paper we discuss some of the technology issues that are the underlying driving
force, and focus on a particular class of parallel computer architectures often called Ensemble Architectures.
They are interesting candidates for future high performance computing systems. The ensemble configura·
tions discussed here are linear arrays, 2-dimensional arrays, binary trees, shuffle-exchange networks, Boolean
cubes and cube connected cycles. We discuss a few algorithms for arbitrary data permutations, and some
particular data permutation and distribution algorithms used in standard matrix computations. Special
attention is given to data routing. Distributed routing algorithms in which elements with distinct origin
and distinct destinations do not traverse the same communications link make possible a maximum degree
of pipelined communications. The linear algebra computations discussed are: matrix transposition, ma­
trix multiplication, dense and general banded systems solvers, linear recurrence solvers, tridiagonal system
solvers, fast Poisson solvers, and very briefly, iterative methods.

1 Introduction

Advances in device technology have thus far been the primary factors in the evolution of high performance
computing. Switching times have decreased from 1 ,.8 for vacuum tubes to around 0.1 - 0.05n8 for MOS
technologies, and an order of magnitude less for bipolar technologies. Clock rates have increased from below
1 MHz to 10 - 40 MHz in MOS technologies, and 250 MHz for the CRAY-2 (bipolar). While switching
speeds have increased by four to five orders of magnitude (six for the CRAY-2), clock rates have increased by
only two to three orders of magnitude. The instruction issue rate has increased similarly to the clock rates,
but the amount of work carried out per instruction varies significantly. The rate at which floating-point
operations can be performed has increased from 0.1 - 1 kflops (floating-point operations per second) to
10 - 20 Mflops for MOS technologies, and 250 Mflops per floating-point unit in a CRAY-2.

Of the improvement of five to six orders of magnitude in floating-point capability at most three orders
of magnitude are attributed to technological and low level design improvements. Dedicated hardware for
floating-point operations, extensive use of pipelining, and enhanced algorithms contribute the remainder.
In current high performance systems a floating-point operation can be initiated every clock cycle. Silicon
technologies are expected to offer about one order of magnitude increased switching speed before fundamental
limits are reached. Other technologies, such as gallium arsenide, potentially offer a further five to ten fold
increase in switching speeds.

Further dramatic increases in performance must derive from architectural innovations that exploit con­
currency in computations. The critical path in most designs is determined by wire delays rather than gate
delays. Comparing common microprocessor designs with a highly optimized design such as the CRAY one
cannot expect to reduce the number of switching delays per clock cycle by more than a factor of 5. Reducing
the clock cycle through architectural means, i.e., decreasing the number of switching delays per clock cycle,
gets increasingly difficult because wire delays are ever more significant as feature sizes are reduced. Wire
delays do not scale well if the geometric aspect ratios and the electric field in the gate region remain constant.
While switching delays may be reduced in proportion to the scaling, wire delays may either decrease slowly,
remain constant, or even increase depending on what factors (capacitive or resistive) govern the delay.

Replication oflocally interconnected parts offers the highest promise for high performance architectures.

www.manaraa.com

110

Chip 25mm' Chip 50mm' 4" Wafer Clock
100M.A2 200M.A2 (50%) 166G.A2

Dynamic RAM 1 Mbit 2 Mbit 160 Mbit
Static RAM 256 Kbit 512 Kbit 40 Mbit
16-bit proc_ 40 80 6400 54 MHz
32-bit proc. 8 16 1280 36 MHz

Table 1: Chip and wafer level integration, 1Jt feature size

Chip 25mm' Chip 50mm' 4" Wafer Clock
1600M.A2 3200M),2 (50%) 256G),2

Dynamic RAM 16 Mbit 32 Mbit 2660 Mbit
Static RAM 4 Mbit 8 Mbit 640 Mbit
16-bit proc_ 640 1280 102400 216 MHz
32-bit proc_ 128 256 20480 144 MHz

Table 2: Chip and wafer level integration, 0.25Jt feature size

Intermingling storage and processing elements reduces the average area per processing element, and increases
the clock rate in synchronous (non-pipelined) designs. The increased ratio of processing capability per unit
of storage, and the increased clock rate, both contribute to increasing the maximum size of the state that
can change in a single clock cycle, i.e., the rate of computation.

As feature sizes are reduced the amount of storage and logic that fit on a single chip or wafer become
impressive. Tables 1 and 2 contain predictions for 1Jt and 0.25Jt feature sizes, respectively. The basis for
the storage predictions are that a 1-bit dynamic RAM cell requires an area of 100),2 and a 1-bit static RAM
cell requires an area of 400.A2. Processor estimates are based on the Caltech Mosaic 16-bit processor, which
is about 2.5M),2, excluding the pad frame,[93], and the rusc and MlPS 32-bit processors, which are about
12M.A2, excluding pad frame [34,35,71].

At the 0.25Jt feature size level a large number of processors fit on a single die. The estimates in the tables
are highly simplistic and ignore the area required for interprocessor communication as well as processor-to­
storage communication. With communication in the form of a one- or two-dimensional array of processors
with local storage the wiring area should not substantially alter the estimates. With other interprocessor
and/ or processor-to-storage communication networks, substantial area may be required for wiring. Assuming
bit-serial communication and simple switching elements for an n-network, or a Boolean cube, and the design
of [73] as a base case we obtain the fignres in Table 3. The predictions for the Cosmic Cube are based on
an estimated processor area of 140M.A2 [119], and measured performance on existing hardware.

In any fabrication process it is expected that some of the processing cells will be defective. In a two­
dimensional array of cells on a wafer in which bad cells are arbitrarily distributed, it may still be possible to
use the wafer by configuring wires around the defective cells, for example, by laser-restructuring techniques.
It is desirable to design wafers so that live cells can be configured in the desired pattern by "threading
around" the dead cells. Leiserson and Leighton [86] and independently Greene and EI Gamal[32] have
investigated the problem of configuring one- and two-dimensional arrays of processors on a faulty wafer.
They show that if the faulty nodes are randomly, and independently distributed, then the live nodes may
be connected into a smaller two-dimensional mesh with expected maximum edge length O(logN) and a
channel of width 0(1), where N is the number of cells in the array. Simple regular structures are not costly
to assemble under the presence of faults.

www.manaraa.com

III

160 Mbyte
32-bit RISC II processors 10240 processors

370 GIPS
160 Mbyte

16-bit MOSAIC processors 51200 processors
55 GFLOPS 32-bit add
12 GFLOPS 32-bit mult

256 Mbyte
Cosmic Cube nodes (140MA2) 2000 processors

(Intel 8086, 8087, 128kbyte) 2 GFLOPS ("measured")

Table 3: W arer level integration, same area for processors and storage

1.1 Ensemble Architectures

Ensemble architectures [118] represent a low cost alternative to future high performance systems_ High
nominal performance at low cost is obtained by composing systems out of a large number of parts mass
produced in state-of-the-art technology_ The storage may be entirely distributed among the processors, or
part of the storage may be subdivided into storage modules, each of which forms a node in a network
In the generic architecture some of the nodes in the network represent processors with storage, others
storage alone. The network topology in an ensemble architecture is sparse and regular. Control and data
are distributed. The notion of ensemble architectures is not new. PEPE [69,48] is an early example of an
ensemble architecture of medium granularity, and cellular automata can be viewed as ensemble architectures
of fine granularity.

High performance requires a high rate of operand consumption and generation. With only a few op­
erations per operand high storage bandwidth is required. High storage bandwidth is achieved in ensemble
architectures through a highly partitioned storage. Associative memory is one extreme instance of this
philosophy in that each storage cell is equipped with some processing logic. Systolic architectures and the
Connection Machine [38,37] are close to this extreme in that there are only a few registers, or a limited
amount of storage, per processing node. The storage bandwidth of the Connection Machine model CM-I is
32 Gbyte&/&ec at 4 MHz. Model CM-II offers a peak bandwidth in excess of 50 Gbyte&/&ec. Intermediate
levels of storage bandwidth are obtained by a larger granularity of computations, as in the Cosmic Cube.
Partitioning of storage to yield storage bandwidth compatible to processor capacity is used in high per­
formance architectures such as the CRAY and CYBER series of computers, and was used already in early
computer designs [76]. The partitioning of the storage is much less than in, for instance, the Connection
Machine, and so is the storage bandwidth, which is 4 Gbyte&/&ec for the CRAY-2.

There are many considerations in choosing interconnection networks, processor designs, and program­
ming models for ensemble architectures. Manufacturability and scalability with respect to performance and
reduced feature sizes of the technology are assured by interconnecting the processing elements sparsely and
regularly. The interconnection network chosen represents a tradeoff between communication bandwidth,
fault-tolerance, and design and manufacturing considerations. The global architecture (SIMD or MIMD),
the granularity of nodes and their architectural features must be chosen so that high real performance can
be achieved by minimizing communication and computation tiroe.

1.1.1 Interconnection Networks

The choice of interconnection network determines the rate at which processors can communicate. While
high bandwidth is desirable from the point of view of an algorithm designer, it may be undesirable, and in
fact infeasible, from the point of view of the hardware designer. High degree of interconnect adversely affects
scalability, area and volume requirements, and clock rate. One of the most pressing problems in assembling
large systems across many chips is caused by severe pin restrictions - while the number of components per

www.manaraa.com

112

chip is expected to grow by up to two orders of magnitude, the chip sizes are not expected to increase much
and with pin sizes limited by mechanical considerations the bandwidth at the boundary of a chip will only
increase if the rate at which off-chip wires are driven is increased. Unless many communication channels are
multiplexed per pin, thereby making the system clock longer, high fanout systems simply cannot be built.

There is an intimate relationship between processor design and the choice of interconnection network.
As the capacity of local storage grows, so does the interprocessor distance, and the distance to the furthest
location of local storage. With increased local storage it becomes necessary to structure storage [94J to
minimize access delay. In the capacitive model for wire delays the access time can be reduced to order
logM and in the resistive model to order v'M for a storage of size M. Assume for the moment that the
processors with local storage are interconnected as a one- or two-dimensional array. Then, the interprocessor
distance grows as v'M and the minimum time to drive the interprocessor connection increases in proportion
to logM for the capacitive model and v'M for the resistive modeL There is no qualitative difference in the
relative growths in local access time and interprocessor communication time. Small local storage allows for
short wires between processors, and potentially high clock rates. For one- or two-dimensional arrays it is
desirable to keep the local storage small Local storage can increase performance, if arithmetic is parallel
and communication serial, because with local storage several such references are typically made for each
remote reference.

Many interconnection networks with a small diameter, such as the shuffle-exchange, butterfly, cube con­
nected cycles and Boolean cube require long interconnections, when layed out in a two- or three-dimensional
space. Interprocessor communication will be slower than references to local storage, even if the whole net·
work were to fit on a single wafer in submicron technology. It is important that such systems are self-timed
in order for computations to make use of the higher bandwidth between a processor and its local storage,
than the bandwidth for remote references. Note that the access time for different remote references may
differ. The fact that some of the networks with a high wiring area do not make effective use of the area
(silicon), may indeed cause networks like a mesh to offer a higher total bandwidth than, for instance, a
Boolean cube [106J.

Network costs

Configuring processors as linear arrays and complete binary trees requires a total number of intercon­
nections equal to the number of processors. Both configurations scale in an excellent way. With several
processors on a single chip, the required bandwidth at the chip boundary only grows at the rate of the
clock frequency, regardless of the number of processors per chip and the size of the machine being built [87J.
The tree has the advantage over the linear array that its diameter (the distance between the processors
that are furthest apart) is 2(log2N - 1) compared to N (or ~ N for an array with end-around connections).
The diameter of the network topology defines a lower bound for the speed of computation [29J. Global
communication can be accomplished faster in a complete binary tree than in a linear array. The required
area for the complete binary tree is of order O(N) [94J, if the nodes can be placed arbitrarily in the plane,
in which case the maximum wire length is r!riNVN [100,9J. Placing all the leaf nodes of the complete binary
tree along the boundary yields an area requirement of order O(Nlog2N) [I1J and a maximum wire length
of order o (r!riNN).

Linear arrays and complete binary trees have small bandwidth and present communication bottlenecks
for many important computations. The two· dimensional mesh and mesh of trees [85J offer higher bandwidth
and are preferable for many matrix computations. The first two networks can be realized in small area on
a wafer (0 (N) for the N node mesh and 0 (N log2 N) for the N node mesh of trees) with wire lengths 0 (1)
for the mesh and O(logl~gNVNlogN) for the mesh of trees. The advantage of the mesh of trees over the

mesh is its logarithmic diameter (2 log N compared with 2VN for the mesh).

More sophisticated networks, such as the shuffle-exchange, Il-networks, cube connected cycles [102J,
and Boolean n-cube have also been proposed because of their ability to efficiently emulate other important
networks, or for high total bandwidths. They have been extensively studied in the literature. All these
networks require layout area almost quadratic in the number of nodes, and wire lengths that grow almost
linearly with the number of nodes. Correspondingly, the cost per communication is extremely high and the
clock rates are decreased. Currently, a 64 input one bit wide !I-network with simple switching elements, or

www.manaraa.com

113

Configuration Nodes Diam Fan-out Edges
Linear Array 2" 2"-1 2 2" - 1

2-d mesh 2" 2(2"/2 - 1) 4 2(2k _ 2k/2)

2-d mesh of trees 3· 2k - 2· 2~ 2k 6 5 . 2k - 4. 2k/2)

Tree of meshes (k+ 1)2k 8·2~ 4 2(2k(4k - 1) + V2"+1)
Binary tree 2" - 1 2(k - 1) 3(1) 2" - 2

Boolean cube 2" k k k·2k-
CCC k2" 2k -1 3 3k . 2"-1

Shuffle-exchange 2" 2k -1 <3 "" 1.5·2"

Table 4: Topological properties of some common networks

Configuration Nodes Edge len. Area Pin Count
Linear Array 2" 0(1) 0(2k) 2

2-d mesh 2" 0(1) 0(2") 4VM
2-d mesh of trees K = 3 . 2k - 2· 2t O(VKlogKjloglogK) 0(Klog2 K) ""~VM

Tree of meshes K=(k+1)2" O(k + logk) O(KlogK) 21,'1

Binary tree 2" -1 0(2"/2 jk) 0(2") - 0(2" . k) 4

Boolean cube 2k 0(2') 0(22k) M(k -logM)

CCC k2k 0(2~) 0(k222k) M - ¥log2¥
Shuffle-exchange 2" 0(2kjk) 0(220 j k')

Table 5: Layout properties of some common networks

2 32-input Batcher sorting networks, fits on a single chip [73].

Large systems must be partitioned across many chips and boards. Not all the networks mentioned above
are easily partitioned under the existing or predicted pin constraints. Tables 4 and 5 summarize the above
discussion. The nUlllber of off-chip channels are stated in terms of the nUlllber of processors per chip, M.

Nodes in a network may either be switching elements or complete processors. The two alternatives yield
architectures with slightly different properties. Multistage shuffle-exchange networks, a-networks, banyan
networks, and butterfly networks are all closely related interconnection networks in which internal nodes
typically are switching elements, possibly with a queueing capacity. These networks are used in architectures
such as the HEP [10], the Ultracomputer [117,31], the RP3 [101], TRAC [120], CEDAR [78], and the BBN
Butterfly [20]. In some designs processors with local storage are at both ends of the network, in others the
processors have a negligable amount of storage, and storage units and processors are at opposite sides of the
network, and at others again processors with a measurable amount of storage are at one side of the network
and a "shared" storage at the other side. The CHiP architecture [81] represent an "intermediate" form
of architecture in that it uses a switch network for communication between processors with local storage,
but the switch network is novel and any path between a restricted pair of processors goes through a fixed
number of switches, like 2 or 4. The switch network yields a capability to reconfigure the ensemble into
a large variety of common configurations. Recently, Leiserson has proposed the Fat-tree network [88] as a
universal hardware-efficient network that also uses switches, but with rebroadcasting instead of queues at
switching nodes.

Network capabilities

An attractive feature of a network is the ease and efficiency with which it can simulate other networks.
If the simulation does not require much overhead, and if the processors of the network being simulated
can be mapped automatically onto the existing network, then any program written for the first can be

www.manaraa.com

114

automatically compiled to run efficiently on the second. The problem of finding a communication efficient
algorithm for a specific network can then be formulated as a problem of embedding one graph, the guest
graph corresponding to the communication needs of the algorithm in the graph describing the network,
the host graph. Typically edges in the guest graph are mapped onto paths in the host, and the host may
have a larger set of nodes than the guest. The dilation of an edge is equal to the length of the path it
is mapped to in the host graph, and the expansion is the ratio of the number of nodes in the host and
guest graphs. The dilation of edges can cause a corresponding decrease in throughput (the time between
successive computations of a given kind), or just an increase in latency (additional time for completion of
the first computation in a set).

For elementary algorithms common data structures and communication patterns are one- to four­
dimensional meshes, complete or arbitrary binary trees, the FFT butterfly network, and the data ma­
nipulator network. As may be expected, hosts with a low connectivity and small bisection width, such as
one-dimensional arrays and trees, are not efficient universal networks. Two-dimensional arrays of processors
are better hosts. Thompson gives an embedding of the FFT butterfly network in a two-dimensional mesh
such that logN nodes of the butterfly are mapped to one node in the mesh. The maximum edge dilation is
,,(N, and up to logN butterfly edges are mapped onto one edge of the mesh.

The Boolean cube is an exceptionally versatile host graph. Multi-dimensional arrays can be embedded
with dilation 1 and expansion 1 in the Boolean cube, if the number of grid points in each dimension of
the array is a power of 2. It is also well known that the FFT butterfly network can be embedded in the
Boolean cube with logN butterfly nodes per cube node, such that the dilation is 1 and there is a one-to-one
correspondence between edges in the FFT network and the cube. A static embedding allows a normal
[129] algorithm (one that proceeds from input to output without reversing direction) to execute in the same
number of steps on the cube as on the FFT butterfly network, but the throughput of the cube is lower by
a factor of logN, since a cube node simulates logN FFT network nodes. Similarly, a dynamic embedding
of the FFT-butterfly network in a shuffle-exchange network yields a slowdown by a factor of 2 for normal
algorithms. The throughput is degraded by a factor of 21ogN. Similar results hold for bitonic sorting
networks, being recursively composed FFT networks. Recently, a number of results has been obtained on
the embedding of complete binary trees, multiple complete binary trees, multiple binomial trees, balanced
spanning trees, and arbitrary trees for the cube [132,8,7,50,44]. It follows from [8] that the Boolean cube can
efficiently simulate the mesh of trees network. By construction of the tree of meshes network it is not difficult
to see that the Boolean cube can embed this network with dilation 1. The universality of the Boolean cube
follows from the fast implementation of sorting algorithms, and the randomized routing schemes of Valiant
[131].

Applications rarely consist of a single type of computation. Each component of the set of "elementary"
computations defining an application may have different ideal data structures. Indeed, it may even be the
case that different data structures are ideal for different phases of an "elementary" algorithm, since the
communication pattern may not be uniform throughout the execution of the algorithm [58]. The need for
data reallocations in order to minimize the complexity of an algorithm decreases with the ability of the
newtwork to efficiently support different access patterns to a data structure. The Boolean cube can emulate
with low overhead many of the prototypical graphs that either represent particular data structures or
data dependency graphs for standard algorithms, or networks that have been proposed as VLSI computing
structures. A static embedding of a data structure can support many types of access schemes without
communication penalty, reducing the need for data reallocations.

For arbitrary computations one measure of the utility of a network is its total bandwidth, which is
proportional to the total number of edges. Hence, the bandwidth of a pipelined fl-network, (for example,
the NYU Ultracomputer [31]), is the same as the bandwidth of a Boolean cube. However, there is a latency
in the switch that grows logarithmically with the number of processing elements. In the Boolean cube
the interprocessor communication time is nonuniform. The minimum interprocessor conununication time
amounts to one routing. The maximum number of routing steps is log2N. Interprocessor communication in
an fl-network includes 21og2N links. If the communication width corresponds to a word, then this latency
may be a significant fraction of the communication time. With bit-serial communication the difference
may be negligable, and entirely dependent upon various implementation decisions. Moreover, whether the
nominal difference results in a real performance difference depends on the particular data dependences of

www.manaraa.com

115

the computation, and the mapping of the computations on to the architecture.

2 Ensemble Architecture Algorithms

An ensemble architecture of extreme concurrency is similar to systolic architectures. However, in ensemble
architectures data management is an even more predominant factor. In most, but not all, systolic architec­
tures most of the data (input and output) are stored outside the array, and the management of such data
is generally ignored. In algorithms for ensemble architectures it is generally assumed that initial data, as
well as the results, are stored within the ensemble. Furthermore, the number of nodes in the ensemble is,
in general, insufficient to match characteristic parameters of the problem, but the amount of storage per
node is significant. The granularity of computations in ensemble architectures is often larger than in systolic
architectures.

Time-space trade-offs are at the core of mapping algorithms onto ensemble architectures. Data and
control structures, synchronization and communication are, in general, considerably more complex in en­
semble architectures than in systolic designs. The time-space trade-off in ensemble architectures is often
made in favor of minimizing data movement. Systolic designs are of fine grain and designs are often such
that the communication time is comparable to the time for logic or arithmetic operations. Most ensemble
architectures are of a coarser grain and interprocessor communication is typically slower than the execution
of arithmetic and logic operations.

Algorithms are devised both in an ad hoc manner and systematically. The first approach may lead to
entirely new, efficient, algorithms. The second approach can be supported by algorithm design tools, and
provides the necessary insight to develop compilation techniques that transform abstract representations of
algorithms into efficient code for a variety of architectures. In the systematic approach, which is followed
in the description of sample algorithms below, a computation graph defining the partial ordering of com­
putations is created from the definition of the computation in a suitable notation. Then, this computation
graph is mapped on to the ensemble. The computation graph has a level or stage for each sequential step of
the algorithm. Nodes of the graph represent computations, and the computations represented by the nodes
at a given level can all be performed concurrently. Arcs between nodes represent data transfer, which with
nodes of the computation graph mapped into different processors represent communication. In a sufficiently
large ensemble the mapping of the computation graph can be made such that all nodes of a given level are
assigned to distinct processors. The situation in this case is similar to what is typical for systolic designs
[68], [65], [17], [91], [97], [96], [103], [89], [19], [22]. If there are fewer processors than the maximum number
of nodes at anyone level of the computation graph, then different nodes have to be identified with the same
processor. Two such schemes are cyclic and consecutive identification [50] defined precisely later.

In the identification of multiple nodes of the computation graph with processors in a specific ensemble
architecture several performance related issues arise that do not occur in designs of the systolic type. For
instance, in such a design it is often sufficient for maximum utilization of resources that no two elements
compete for the same communications link at the same stage in the execution of the algorithm. But, in an
ensemble architecture it may be required that for maximum performance communications during different
stages of the algorithm do not comp ete for the same communication link. The ability to establish different
communication paths with a minimum number of shared edges becomes important. The size of the problem
relative to the size of the ensemble also affects the optimum embedding in other ways due to restricted
communication.

With larger granularity of computations operations are no longer occurring concurrently to the extent
disclosed by the computation graph. A parallel algorithm that minimizes the time for arithmetic operations
on an unbounded number of processors may have a higher total operations count than an algorithm minimiz­
ing the number of arithmetic operations. Bitonic sort and odd-even cyclic reduction are examples thereof.
In order to minimize the required solution time on an ensemble of finite size a combination of algorithms
may be needed. In some instances such combinations can be obtained through algorithm transformations.
Which algorithm minimizes the execution time may also depend upon the number of problems to be solved
in that some algorithms are more amenable to pipelining than others.

www.manaraa.com

116

We will describe some basic ensemble architecture algorithms for computational linear algebra and sort­
ing, and focus on the issues raised above. The ensemble architecture topologies used as model architectures
are linear arrays, 2-dimensional meshes, binary trees, shuffle-exchange, Boolean cube, and cube connected
cycles networks. The algorithms have communication topologies in the form of one- or multi-dimensional
meshes, butterfly networks, data manipulator networks, and spanning trees. We first describe the embeddings
of these graphs in graphs representing the topology of the ensemble architectures.

2.1 Graph Embeddings

The computation graph defines a partial ordering of the computations. Constraints on the realization of the
computation graph are imposed by the ensemble architecture, and are incorporated in the mapping process.
The computations corresponding to the nodes at a given level (order) have to be spread over time if there
is an insufficient number of nodes in the ensemble, or if the communication implied by directed edges may
require more than one communication step. This situation occurs if the operands at the source and sink of
the edge are located at nodes at a distance greater than 1 in the ensemble. In the interest of conserving
storage, nodes of the computation graph are sometimes identified with a given storage location. Such a
strategy results in a variety of access schemes for the same data structure. If the storage has a latency, then
the latency may determine the rate of execution during some part of the algorithm as for FFT and odd-even
cyclic reduction [15] on vector architectures. The bank conflict problem in vector processors is well known,
and architectural solutions [13], [82], [84], [105], as well as solutions at the application program level for
particular algorithms [72], [47] have been proposed.

The situation is the same within a node in an ensemble architecture, but in addition the time of accessing
storage is not uniform. In a simplified model the storage of nodes with which a given node has direct
connections can be accessed in 1 unit of time, the storage of the neighboring nodes of the immediate
neighbors in 2 units of time, etc. The larger the number of neighbors the larger the number of different
access schemes that can be supported by a fixed data structure at a given number of communication actions.
Reconfigurability through switchable interconnections gives the ensemble the same property.

2.1.1 Complete Binary Tree Hosts

We first consider guest graphs in the form of one- and rilUlti-dimensional arrays. Rosenberg and Snyder
[109] and Sekanina [121], have given a procedure for a proximity preserving embedding of a 2n - 1 node
loop in a 2n - 1 node binary tree. Let dL (i, j) be the distance between nodes i and i in the loop, and </J(i)
and </J(j) be the indices of the tree nodes to which nodes i and i are mapped. Then, dT(</J(i), </J(i + 1)) ::::
3, Vi, where dT (i, i) is the distance between nodes i and J in the tree. They have also shown that

~l~I,;-2 dT(</J(i) , </J(i + 1)) :::: 2(1LI - 1), i.e., the average distance between adjacent nodes is less than 2. ILl
denotes the length of the loop. For any embedding of 2-dimensional arrays of n by n nodes in the leaves
of a complete binary tree DeMilIo, Eisenstat, and Lipton [23] have shown that there exist nodes (i, i) and
(i + 1, i), adjacent in the array, such that dT(</J(i, i), </J(i + 1, i)) > log2n - 3/2. Rosenberg and Snyder
[109] show that the average distance for the embedding of a 2-dimensional array in the leaves of a binary
tree is at most 7 - 2-l1og,nj+l. Rosenberg and Snyder also consider the embedding of d-dimensional arrays
with nd nodes in the leaves of 2d_ary and binary trees. The average distance between nodes adjacent in a
d-dimensional array when embedded in a 2d _ary tree is at most 4 - 2- l1og,nj. The bound for a binary tree
is (4 - 2-l1og,nj)d. The maximum distance is at most 2dlog2 n for the binary tree embedding.

2.1.2 Boolean cube hosts

Nodes in a Boolean cube can be given addresses such that the addresses of adjacent nodes differ in precisely
1 bit. Furthermore, the number of adjacent nodes for any node equals the number of dimensions of the cub e,
i.e., the number of bits in the address. A loop embedding that preserves proximity is easily obtained for
ILl = 2n by encoding the indices of the nodes in the loop in a binary-reflected Gray code [107]. Such Gray
codes have several interesting properties. For instance, it is easy to show that dc (Gi , G(i+2;)m0d2') = 2 for

www.manaraa.com

117

Elem. Proc. Elem. Proc. Elem. Proc. Elem. Proc.
index index index index index index index index

0 0000 0 0000 0 0000 0 0000
1 0001 1 0001 1 0001 1 0001
2 0011 2 0011 2 0011 3 0011
3 0010 3 0010 3 0010 2 0010
4 0110 4 0110 7 0110 6 0110
5 0111 5 0111 6 0111 7 0111
6 0101 6 0101 5 0101 5 0101
7 0100 7 0100 4 0100 4 0100
8 1100 15 1100 12 1100 12 1100
9 1101 14 1101 13 1101 13 1101

10 1111 13 1111 14 1111 15 1111
11 1110 12 1110 15 1110 14 1110
12 1010 11 1010 11 1010 10 1010
13 1011 10 1011 10 1011 11 1011
14 1001 9 1001 9 1001 9 1001
15 1000 8 1000 8 1000 8 1000

Table 6: Conversion of Gray code to binary code

j > 0 [58]. This property is important for algorithms such as the FFT, bitonic sort, and cyclic reduction.
For the FFT and bitonic sort an embedding according to a direct binary encoding of the indices of the
data elements is preferable. However, application programs typically include the use of several different
"elementary" algorithms, and a Gray code embedding may be preferable for other computations.

Another property of the binary-reflected Gray code is that for i even dc (Gi, G(i+3)mod2.) = 1. Any
loop of length 2n- 1 + 2k, k = {I, 2, ... , 2n - 2 } can be embedded in a n-dimensional cube (n-cube) such that
de(Gi, G(i+l)modILI) = 1 for i = {O, 1, ... , ILI- I} [50]. For ILl odd there exists a node i in the loop such that
dc(Gi, G(i+l)modILI) = 2. That the mininlum maximum distance must be 2 is easily proved by considering
the number of bit complementations in a cycle. In the following we refer to binary-reflected Gray codes
simply as Gray codes.

An embedding according to the binary encoding of node indices in a loop does not preserve proximity.
For i even dc(¢(i),¢(i + 1)) = 1, but for i odd dc(¢(i),¢(i + 1)) falls in the range [2,n] (dc (¢(2n-l-
1), ¢(2n - 1)) = n). A Gray code encoding Gi = (gn-lo gn-2, ... , go) can be rearranged to a binary encoding
i = (bn- lo bn- 2 , ••• , bo) in n - 1 routing steps. The highest order bit in the Gray code encoding of an integer,
and the highest order bit in its binary encoding coincide. The encodings of the last element, N - 1, differ
in n - 1 bits. An element needs to be routed in dimension j if gj Ell bj = 1. Routing the elements such
that successively lower (or higher) order bits are correct yields paths that intersect at nodes only [50]. This
form of routing amounts to reflections around certain "pivot" points in the Gray code. The pivot points are
defined by the transitions in the bit being subject to routing. Table 6 illustrates the sequence of reflections
that convert a 4-bit Gray code to binary code. A reflection consists of an exchange of elements between a
pair of processors. Since each dimension is routed only once, no two elements traverse the same edge in the
same direction during the entire process of data reallocation. If there are multiple data per node the routing
of elements can be pipelined without conflict. This property is important, if a processor can concurrently
support communication on all of its communication links.

The embedding of d-dimensional meshes with nd; nodes in dimension i is easily accomplished by
partitioning the address space such that there are f/og2nd;1 bits (dimensions of the cube) allocated for
dimension di of the array. For nd; = 2k for some k this simple embedding is also efficient in the use of nodes
in the cube. For meshes with sides that are not powers of 2 the embedding for most meshes can be made
such that the expansion is minimum and the maximum dilation equal to 2 [43].

www.manaraa.com

118

Processing plane

Storage planes

Virtual processors

Figure 1: Processing and storage planes (virtual processors)

For the FFT butterfly network an identification of the corresponding nodes in different ranks with a
cube processor yields a dilation 1 embedding. If (",Iy) is the address of a butterfly node, where", is n bits
and y is log2n bits, i.e., '" gives the address within a rank of the butterfly, and y is the address of the rank,
then all nodes with the same", are mapped into the same node of the Boolean cube with the scheme just
suggested. Each cube node performs the task of log2N butterfly nodes. Each butterfly communication is
between nodes adjacent in the Boolean cube. If a binary-reflected Gray code encoding is applied to ", then
butterfly communications are between nodes at distance two, except for the butterfly on the lowest order
bit of ".

For the data Illanipulator network an identification of nodes of the network in the same way as for the
FFT butterfly network does not yield communication between adjacent nodes, since any node communicates
with nodes i ± 23. One of these two communications are with an adjacent node, but the other is not, in
general. However, if a binary-reflected Gray code encoding is applied to ", then proximity is preserved in
that no communication is over a distance greater than two.

There exist many spanning graphs [44] in a Boolean cube. When buffer space is at a premium a
Hamiltonian path may be the only choice, but if the data volume is low, then the height may be more
important, and a spanning binomial tree [27,4] may be the best choice. For maximum utilization of the
bandwidth n rotated and translated spanning binomial trees can be used. Such edge-disjoint spanning
binomial trees [44] are optimum for large data volumes. In many instances several spanning trees are
required concurrently, such as if all nodes broadcast data to all other nodes. If communication can take
place only on one port at a time, then the spanning binomial tree routing is optimal, but if communication
can take place on all ports concurrently, then routing according to Balanced Spanning n-trees, or Rotated
Spanning Binomial Trees, is optimum [44].

2.1.3 Aggregation of data Elements

For an P by P matrix and a 2n-cube with p 2 > 22n , elements of the matrix have to be identified, and stored
in the same node of the ensemble. We consider two schemes of identifying matrix elements with nodes of
a 2n by 2n array. In consecutive storage all elements (i,j) = {O,l, .. ,P - I} of a matrix A are identified
and stored in processor (p, q) p = L TiT J and q = L rtT J. Each processor stores a submatrix of size ~.
In cyclic storage the matrix elements are stored such that elements (i, j) are identified with node (p, q),
p = imod2n, and q = jmod2n. In the consecutive storage scheme elements with the same least significant
bits are identified with the same processor, whereas in the cyclic scheme the identification is made on the
most significant bits.

With the consecutive storage scheme algorithms devised for the case of P = 2n can be employed with
the apparent change of granularity. Operations on single elements are replaced by matrix operations. In
the cyclic storage scheme the processing elements can be viewed as forming a processing plane, and the
submatrices as forming storage planes, also known as virtual processors, Figure 1.

We find that the cyclic storage scheme enforces a greater insight into the communication and storage

www.manaraa.com

119

management issues. Elemental operations are of fine grain. For an ensemble architecture with communica­
tion overhead that is nonzero, or that is not proportional to the number of elements communicated, and that
has pipelined arithmetic units, operations of fine grain should, in general, be merged for optimum use. Con­
versely, if the consecutive storage scheme is used it may be desirable to partition the elemental operations to
increase the utilization of the ensemble. For matrix multiplication of square matrices there is no difference
in processor utilization for the two storage schemes. But, for an algorithm such as LU-decomposition where
the number of matrix elements involved in a step is decreasing throughout the computation, cyclic storage
may be preferable. For LU-decomposition on a dense matrix it may yield a performance improvement in
the range 1.5 - 2 [24J. For the solution of tridiagonal systems it yields a performance degmdation [58J. The
optimization of vector length, or communication packet size does not affect the optimum allocation of data,
or the choice of algorithm.

2.2 Data Permutations

2.2.1 Conversion between storage schemes

Rearrangement of consecutive to cyclic storage order (or vice versa) can be carried out in time P /2 n +
n for P elements stored in a 2n processor Boolean cube [50J. For this communication complexity it
is required that a processor can support communication on multiple ports, and that the communica­
tion for successive stages can be pipelined. In the consecutive storage order the partitioning of the ad­
dress space is (an -lan -2 ... aolbm - 1 ••• bo), where the n highest order bits are processor addresses and
the m lowest order bits are local addresses. In the cyclic storage scheme the bit fields are exchanged
to (bm _ 1 ••• bolan _lan _2 ••. ao). Clearly, if m = n the storage conversion is equivalent to a matrix trans­
position. The exchange can be performed as a sequence of shuffle operations, i.e., left cyclic shifts on the
address, or unshuffle operations through right cyclic shifts. Each such shufHe operation has a maximum
path length of n edges. Performing the shuffle operations one at a time results in a communication time
proportional to min(n, m)n. By performing a bit-wise exclusive-or operation on the addresses before and
after the conversion it is clear that the maximum distance an element needs to traverse is n. Since each
routing operation is an exchange operation and a dimension is only routed once, it follows that the paths
are edge disjoint.

The rearrangement can be made recursively by a sequence of exchanges (exclusive-or operations) on
distinct bits. The order in which the bits are treated is immaterial. All exchanges imply communication
if m :0; n. An alternative implementation of the conversion algorithm is to perform exchanges of elements
between pairs of processors differing in successively lower order address bits [50,41 J, and to perform local
shuffle operations to make the elements that are being exchanged form a contiguos block. The processors
with addresses in the lower half of the processor address space exchange the elements of the upper half of
their local address space with the contents in the lower half of the local address space of their corresponding
processors in the upper half of the processor address space. The result is that the first half of the processors
contain the first half of the elements. An unshufHe operation on local addresses (or shuffle operation on the
data) brings the first half of the data into row major order in the processors with addresses in the lower half
of the address space, and the second half into row major order in the second half of the set of processors.
The procedure is repeated recursively for each half independently, and concurrently.

Clearly, the local shuffle operation need not be carried out explicitly. Note that exchanges are always
performed on half of the local address space, regardless of recursion step, or the number of rows or columns.
This property is not true in forming the transpose of a rectangular matrix.

Carrying out the recursion in reverse order transforms a consecutive storage order to a cyclic storage
order.

2.2.2 Matrix transpose

The formation of a matrix transpose is a particular permutation of data elements. With the matrix elements
stored consecutively the encoding is (rpn.-l rpn.-2 ... rpolrvm._l ... rvOIlCPn,_lCPn,_2 ... cpoICVm,-l ... evo),

www.manaraa.com

120

[)I [)I [)f ~

" " " 1M'
[)I IJ' ~. I-"

" " " " [)I ~ ~ ~
1/ Ii " " [)I ~ l;o [)I

" I"'" rr "
Figure 2: Recursive transposition of a matrix

where rp denotes the row processor addresses and rv the local addresses in the row direction (virtual row
processors), cp the column processors and cv the local addresses for the column Direction. The transposition
corresponds to exchanging the row and column bit fields. It can be carried out recursively [123,26,50,41] as
illustrated in Figure 2 for n,. + m,. = ne + me.

In the first step of the recursive procedure illustrated in Figure 2, the interchange of data is performed on
the highest order bit of the row index and the highest order bit of the column index. In the second step the
interchange is performed on the second highest order bit of the row and column indices, for all combinations
of the highest order bits (i.e., 4 combinations). The number of index sets that differ in one bit of the row
and column indices increases as the procedure progresses towards lower order bits.

For the consecutive storage scheme it is easily seen that with nr = ne = n, the first n steps imply
interprocessor communication and with m,. = me = m the last m steps are local to a processor node. These
last steps consist of local address changes. (We presume here that the transpose is needed with some other
data in some computation. Otherwise, the first n steps could also be accomplished without data movement
by a suitable change of processor addresses.

With the cyclic storage scheme the situation is reversed. The first m steps amount to local address
changes, whereas the last n steps require interprocessor communication. After the first m steps there are
22m matrices of size 2n by 2n to transpose. All matrices are stored identically.

With nr = ne = n there is 2n dimensions to be routed. Indeed, all processors on the main anti·
diagonal have elements that requires a routing distance equal to 2n. With row and column dimensions taken
pairwise all communications are exchanges over a distance of 2. The paths can be made edge-disjoint and
communication pipelined. Moreover, constant storage per node suffices [50,41]. The element transfer time is
22m+2n-1 accomplished by pipelining the 22m matrix transpositions, assuming that communication in both
directions can take place concurrently on all of the ports of a processor. With the consecutive storage model
and using the apparent granularity in the form of block operations the communication time is proportional
to 2n X 22m , which for n large is considerably higher. The difference between the two expressions is due to
the pipeliuing of element transfers in the first case. The same complexity is also attainable in the consecutive
storage case by pipelining the transfers of elements of the blocks. It is possible to reduce the time further
by establishing additional paths [41].

With a Gray code embedding of the array, successive row and column indices are always located in
neighboring nodes of the cube. However, the communication required by the recursive procedure on row
and column indices is between nodes storing elements of rows and columns whose binary encoding differs in
successively higher or lower order bits. Each such communication requires the communication of elements
in two dimensions, since complementing a bit in the binary encoding complements 2 bits in the Gray code
encoding (except in complementing the least significant bit).

However, with G(i) and G(j) being the Gray code of the row index i and column index j the transpose
operation for the case with mr = me = ° is equivalent to the communication implied by changing (G(i)IG(j))
to (G(j)IG(i)), which indeed is the same operation as in the binary encoded case. Routing row/column
dimensions in descending order implies that matrix elements are subject to reflections around the main

www.manaraa.com

121

·1 : 2 '3
1 2 <:<

::-::: 2 1
2 :::: 1 2

3 .::~. .;;;, }.' 1
3 [}.' :;: .

.:.: . 2'1.3 :~ .

2 . '::: 3 2

Figure 3: Transposing a matrix stored in a binary-reflected Gray code

a; 01 10 11 ~ ~ . .
" 0; 'i 'i

GG~ ~ V
.
V ~ ~ 'I

" li II ~ !
[OW 1

~ ~ 01 n

~~~ 
· . 

~ ~ ~ ~ " ~ · 'i li '" ~ . . · D ~ " " ~ . :""I:~ 
. · . tow) 

Figure 4: Routing paths in transposing a 4 by 4 matrix on a 4-cube 

diagonal, and the anti-diagonal in alternating order. The behavior of the algorithm is illustrated in Figure 
3. The numbers on the diagonals indicate the order of the reflection the submatrices are undergoing. 

The application of the alternating descending order reflection algorithm to a 4-cube is illustrated in 
Figure 4. The routing algorithm can be made distributed. 

Performing the transformation by a 2-dimensional mesh algorithm yields a considerably higher number 
of routing steps [50], (22m + 1)(2n - 1 - 1)/2. The order of complexity of that algorithm cannot be reduced 
since P(P - 1)/2 elements have to pass through O(2n) nodes, each of which has 4 ports. 

The results presented for square matrices can be generalized to rectangular matrices [41]. 

2.2.3 Randomized Communication 

Recently, several probabilistic algorithms of complexity 0(1og2N) for arbitrary permutations on a Boolean 
n-cube and d-way shuffle networks have been devised. The probabilistic algorithms do not guarantee an 
even distribution of elements during permutation. The probabilistic algorithms have two phases. First, the 
elements are routed to a random location, then the elements are routed to the final destination. The routing 
is deterministic. 

During routing from the initial location to the final destination during either phase, several elements 
may reach a node, then be delayed because of competition for a given communications link, even in the 
case that there is precisely one element per node in the initial and final states. Also, several elements may 
reside in a single node at the end of the first phase. Valiant and Brebner [131] show that for a Boolean 
cube with one element per node initially, and after the permutation, the queue length with high probability 
is at most of order O( log2N). Indeed, for P / N elements per node they show that the probability that the 
permutation will require more than (aP/ N + 1)log2N routing steps is less than (e/2a),,(P/N)log,N. They also 



www.manaraa.com

122 

Figure 5: Spanning Binomial Trees in a Boolean cube, with sources in sequential order 

establish similar bounds for so called d-way shuffle networks (in- and out-degree of a node is d), which also 
are considered by Upfal [130J and Aleliunas [3J. It is assumed that a processor can support communication 
on all its ports currently. Valiant and Brebner also show that for a n-dimensional mesh with M = mn nodes, 
the probability that at least one packet has not finished in time (2n -l)(m+ am"I') is less than Ca,;m for 
C < 1. This result compares favorably with the complexity of Batcher's bitonic sort or odd-even merge on 
meshes [128J, [98J, [79J. The Thompson and Kung algorithm yields a complexity of approximately 6VM for 
a 2-dimensional mesh, and (3n2 + n )M1/N for a n-dimensional mesh. Simulations that exhibit a behavior 
well within the bounds for a variety of ensemble configurations are also presented. 

2.2.4 Scan functions 

Some operations applies to sets, such as broadcasting a value to a set of processors, finding the maximum 
or minimum in a given set of variables, or adding all the values. Critical issues in a system with distributed 
control (such as in a message passing system) are termination, completeness and uniqueness, i.e., that 
all nodes have received the message precisely once upon termination. Furthermore, local control of the 
distribution algorithm is desirable. In the Connection Machine, which is a bit-serial, synchronous, SIMD 
architecture, scan functions are available as operators in the progranuning language. The scan function 
reqnires that a spanning tree be generated for a specified set of processors. The encoding of the set of 
processors is most convenient if the processors form a contiguos domain in some index space, such as, for 
instance, a one- or multi-dimensional array. The encoding is particularly easy if the processors correspond 
to a specific bit-field. Such scans are known as segmented scans in the Connection Machine terminology 
[39J. The segments need not correspond to all possible addresses generated by a given bit-field, but should 
be contiguos for ease of encoding. 

Assume for simplicity that the set of processors for which the scan operation shall be performed form 
a subcube of dimension k. Then, a spanning binomial tree for source node s is generated by every node i 
performing an exclusive or operation on its address and the source node address and communicating with 
all its neighbors corresponding to leading zeroes of i al s. An interesting property of this simple scan routing 
is the following [50,53J. If the integers are embedded in the cube according to a binary-reflected Gray code, 
and the dimensions are routed in the order in which they first appear in the Gray code in going from i to 
i - 1 in increasing order modulo the size of the subcube, then the order of arrival for every processor is the 
same as the order of scan initiation, if a scan operation is started at successive processors every other cycle,. 
This situation occurs in Gaussian elimination with pivoting on the diagonal. 

The order preserving property for a binary-reflected Gray code is established by observing that the path 
i, i + 1, i + 2, ... reaches into 2 dimensions after 2 steps, 3 dimensions after 3 or 4 steps depending on i, and 
4 dimensions after a minimum of 5 steps. The behavior of the algorithm for a 4-dimensional cube is shown 
in Figure 5. 



www.manaraa.com

123 

2.3 Sorting 

2.3.1 Combining sequential and bitonic sort on a Boolean cube 

Stone [123J observed that the bitonic sort [5J maps well on to shuffle-exchange networks. From Stone's 
observations the implementation on a Boolean cube is immediate for one element per node. We will describe 
two algorithms for sorting P evenly distributed elements on aN = 2n processor Boolean cube for P > N. 

The bitonic sort merges sorted sequences recursively. With one element per node the algorithm proceeds 
by comparison-exchange operations on elements that are located in nodes differing in 1 address bit, say the 
lowest order bit. Then, two sorted sequences stored in two I-cubes are merged into one sorted sequence 
in a 2-cube. The sorting order, nonascending or nandescending, is determined by a mask. The mask is a 
function of the processor address and the length of the subsequences being merged. In all, 1092P sequences 
are merged serially. The number of sequences merged decreases from P /2 to 1. The final step merges two 
sequences stored in separate n - I-cubes into one sequence in an n-cube. The number of routing steps is 
n(n + 1)/2, independent of the data. Each routing is performed in only one dimension. An algorithm for 
the bitonic sort expressed in pseudo code for P = 2n is as follows: 

For i := 1,2, ... , n do 
If i < n do 

end 

nodes an-I, ." ai+h ai, ai-I, ." ao, ai = 1, set rn.ask=1. 
nodes an-I, ." ai+l, ai, ai-I, ." ao, ai = 0, set rnask=O. 

end 
For j := i-I, i - 2, ... , 0 do 

nodes an_h ... ,aj+h1,aj_h ... ,ao, send their elements to 
nodes an_h ... ,aj+l,O,aj_h .. "aO, which compare local 
and received elements 
nodes with mask=O keep the smaller element and 
nodes with mask=1 keeps the larger 
rejected elements are sent to an-I, .. " aj+l, 1, aj-I, '0', ao 

end 

For P = 2n the last merge operation involves two sequences of length P /2. The merge is accomplished 
through a sequence of comparison-exchange operations on subsequences that decrease in length by a factor 
of 2 for each step. If P > 2n , then additional sequential steps are necessary. 

With the sorted sequence to be stored in cyclic order the first 1092P - n comparison-exchange operations 
of the final merge are local to a node, since the merge is performed recursively on successively shorter 
sequences, i.e., from the high order bits to the low order bits, and the higher order bits are local in the cyclic 
storage scheme. After these steps the result is ~ bitonic sequences ordered with respect to each other. Each 
sequence has one element per node. The last n steps are separately performed on each of those sequences. 
Carrying out the first 1092P - n local steps as a bitonic merge yields poor performance. The operational 
complexity is O( ~(1092P - n), compared to O( ~ + 1092 ~) for a sequential merge including bisection to 
find the maximum/minimum of the local bitonic sequence. This merge can be carried out concurrently in 
all processors [49J. The correctness of the algorithm can be proved by observing that the first 1092P - n 
steps, given the assumed storage order, realize N independent bitonic mergers, each for ~ elements, and 
that corresponding output elements from these mergers form a bitonic sequence. The last n steps realize ~ 
bitonic mergers for sequences of length N. The situation is a generalization of Batcher's construction [5J of 
a 16-sorter out of 4-sorters, see Figure 2.3.1. 

The sorting is accomplished by recursively building longer sorted sequences, starting from the lowest 
order bits. The ~ local elements belong to different sequences for the first n merges, each being a recursive 
merge. The time for cyclic sort by the algorithm outlined above is T = IN( n(21092P - n + 1)( 4tc + tce)/2 + 
2(1092P - n - 1 )tce) + teo, where tc is the time for communication of an element between a pair of processors, 
and tee is the time for a comparison operation. If P ~ N then T is of order O((~)1092P), and if P '" N, 



www.manaraa.com

124 

Figure 6: A network of N ~-sorters followed by ~ N-sorters. 

T is of order O(log~N). The speed-up is O(N) for N < P and gradually changes to O(N/log2N). 

With sorting into consecutive storage order and the elements initially stored consecutively, the first 
log2P - n merges of the bitonic sort is local to a processor, with the merge sequence progressing from low 
to high order bits. These first steps generate a local sorted sequence, that is more efficiently created by a 
good sequential sort. The last n merges requires interprocessor communication, and involves sequences of ~ 
elements instead of single elements. This algorithm is similar to the one proposed in [6]. The finallog2P - n 
steps of each of the last n bitonic merges are local to a processor and should be performed as a sequential 
merge. The communication and comparison complexity is of the same order as for sorting in cyclic order 
[49]. 

A cyclic storage order is generated by building sorted sequences over an increasing number of nodes 
first, then when a sorted sequence extends over all nodes include additional elements locally in the proper 
way. For the consecutive storage order the sorted sequences are first built locally, then extended over the 
processors when all local elements are included. 

The running time of bitonic sort does not depend on the data distribution. This property is a drawback 
for nearly sorted sequences. The data movement in such instances can be reduced at the expense of additional 
logic for determining what subsequences should be exchanged. Such a modification can be made while 
preserving one advantage of bitonic sort, namely that the number of elements per node is kept constant 
during the sorting process. 

2.3.2 Distribution counting 

Rank assignment in the context of distribution counting [74] with L counters, or "buckets", can be carried 
out in a time of at most [~+ L + n - 1]2ta + [L(l - M3 + n]2tc for N :::; L, and [~+ L + n - 1]2ta + 
[6(L - 1) + 5n - 31og2L]tc for N > L, on a Boolean cube [49] (ta is the time for an arithmetic operation). 
For few processors and a large number of elements compared to the number of buckets the algorithm offers 
linear speed-up. If the number of buckets is comparable to the number of elements to be sorted the speed-up 
is sublinear. For few buckets and few elements per node the speed-up is of order O(N/log2N). The rank 
assignment algorithm that yields the complexity estimates above is data independent, as are the algorithms 
based on bitonic sort. The rank assignment algorithm is easily modified to deal only with non-empty 
buckets, which is efficient if only a few buckets in each node are populated. For particular distributions of 
elements the data dependent version will have a complexity of order O(log2L) in the number of buckets, as 
in Hirschberg's shared storage model [40]. 

In the rank assignment algorithm multiple binary tree like computations are carried out concurrently. 
There are L binary trees with N leaf nodes each. The trees form subtrees of a tree with a total of IOY2N L 
levels. Each node has a local copy of each bucket. To find the total number of elements in any bucket the 
number of elements in each of all the different copies of a bucket have to be added. This addition is carried 
out by the subtrees of IOY2N levels. For the rank assignment partial sums are distributed from the root of 
the trees to the leaves. However, first an accumulation over all global bucket sums has to be performed. For 
each tree the summation/rank assignment process is carried out by recursive doubling [75]. 



www.manaraa.com

125 

'.-:.-:.--." '. e 2 '9t 2 c:r- 2 

: \, -- ':': :0"/ : . 1 

o 0123 012) 

Figure 7: Concurrent tree computations on a Boolean cube 

The recursive doubling process is carried out concurrently in all subtrees of height 109zN, by rooting the 
subtrees in different nodes of the ensemble. The global sums of different buckets are contained in distinct 
nodes. The tree embedding is such that one node in the Boolean cube contains /09zN - 1 non-leaf nodes 
ofa subtree, another cube node 109zN - 2 non-leaf nodes of the same subtree, yet 2 other nodes 109zN - 3 
non-leaf nodes of the same subtree, etc. After the first step half of the subtrees are treated by distinct halves 
of the cube. The divide-and-conquer process is repeated recursively. The speed-up for the subtrees of height 
109zN is of order O(N) for L of at least order O(109zN). The top 109zL levels of the tree are embedded 
similarly, Figure 7 illustrates the computations for N = L = 4, 

2.4 Linear Algebra Computations 

In this section we briefly describe a mesh algorithm by Cannon [16], which also is suitable for Boolean 
n-cubes since a two-dimensional mesh can be embedded in a Boolean cube with edge dilation one. We also 
briefly mention a few variations [50] of this algorithm. A recursive algorithm [21] that maps directly to a 
Boolean cube is also discussed, in particular its routing paths and pipelining properties. The multiplication 
of matrices of arbitrary shapes is treated in [66]. We also discuss some of the concerns in solving, dense, 
triangular, banded and tridiagonal systems on ensemble architectures and end with a discussion on the 
relative merits of FFT and tridiagonal solvers on such architectures. 

2.4.1 Matrix multiplication 

Cannon [16] presents an algorithm for computing the product C of two "fN by "fN matrices A and B 
stored in a 2-dimensional array of identical size. The algorithm requires ~"fN communication steps, out 

of which r-r1 steps are for a set-up phase, and "fN - 1 are for the multiplication phase. The purpose of 
the set-up phase is to align elements from the two matrices such that all nodes in the array can perform an 
inner product computation in every step in the multiplication phase. The alignment is accomplished by i 
cyclic shifts of row i of A and j cyclic shifts of column j of B. This skewing operation is the same as the 
alignment seen in many systolic algorithms [80,68]. 

The inner products defining the elements of C are accumulated in-place. Denote the storage cells for 
A, B and C by E, F and G. In the set-up phase the shifting yields: E( i, j) <- E( i, (i + j)mod"fN), F( i, j) <­

F(( i + j)mod"fN,j), G <- 0 for (i,j) E {O, 1, 2, ... ,,,fN - I} X {O, 1,2, ... ,,,fN - I}. Clearly E( i,j) X F( i, j) 
is a valid product for all i and j. In the multiplication phase the following operations are carried out: 
G(i,j) <- G(i,j) + E(i,j) X F(i,j), E(i,j) <- E(i,(j + l)mod"fN), F(i,j) <- F((i + l)mod"fN,j), i,j = 
{O, 1,2, ... ,,,fN -I}. With A a P X Q matrix and B a Q X R matrix the multiplication can be accomplished 
in a time of mazer:jJy 1, r ~ lH 1N l("fN - l)te + r:jJy H 1N H ~ l(C"fN - 1)(ta + maz(ta, tel) + 2ta). 

A drawback of the algorithm by Cannon is that no computations are being performed during the align­
ment process. Some elements make almost 2 full revolutions, should only unidirectional communication 
be allowed. However, one revolution suffices, and algorithms can be devised such that successive matrix 
multiplications can be initiated every"fN "cycles". For instance, using the outer product formulation [47] 
of a matrix product, and passing the columns of A along rows (one element per row) in order of increasing 
column indices, and rows of B along columns in the direction of increasing row indices. The distribution of 



www.manaraa.com

126 

columns of A and rows of B can start from the locations where the elements are stored [54]. The distribution 
can be pipelined, and the initiation of the distribution of the different columns and rows can be spread over 
time in order that no temporary storage be needed, other than for a pair of elements to be multiplied. 
With only unidirectional communication, and end-around connections, a total time of 5("fN - 1) "cycles" 
is required for one matrix multiplication. The complexity of the algorithm may be improved [50], but with 
unidirectional data movement pipelining is easy to visualize. The data movement is similar to that of the 
dense matrix factorization algorithm (without partial pivoting) described later. 

The complexity of the algorithm can be reduced by a term"fN - tn, ifthe alignment can be accomplished 
in time n instead of"fN. For matrices of a size comparable to the number of processors this difference is also 
significant relative to the total time. Dekel et. al. [21] describes such an algorithm for "fN by "fN matrices 
embedded in a Boolean cube of N nodes by a separate binary encoding of row and column indices. The 
algorithm has a set-up phase in which A and B are arranged such that E( i, j) <- A( i, i Ell j) and F( i, j) <­

B(i Ell j,j). Hence, E(i,j) X F(i,j) are valid terms for C(i,j) for (i,j) E {0, ... ,,,fN -I} X {0, ... ,,,fN -I}. 
The rearrangement requires exchanges of elements in the dimensions specified by i for A and by j for B. 
Clearly, the set-up phase requires n steps, and no two elements traverse the same edge in the same direction. 
The set-up phase for multiple multiplication operations can be pipelined so that the total set-up time for P 
problems is P + n - 1. 

In the multiplication phase nodes exchange their content in an order determined by the transition 
sequence of the bits in a binary-reflected Gray code [21]. It follows that the time for multiplying a 
Q by R matrix B by an P by Q matrix A on a Boolean n-cube, with A,B and C <- A X B + C, 
embedded according to a separate binary encoding of row and column indices, is at most (( r fN 1 + 
r ~ m 1N 1 +/og2N -l)te+"fNr fN1 r ~ 1 r 1N lma:c(2ta, tel· The number of sub matrices of size "fNx"fN 

is (r fN 1 + r ~ 1) r 1N 1· The number of block matrix multiplications is r fN 1 r ~ 1 r 1N 1· Cannon's matrix 
multiplication algorithm is devised for SIMD architectures. For mesh or Boolean cube configured ensembles 
of the MIMD type it is possible to devise algorithms with many different kinds of data flow and a com­
plexity of U fN 1 r ~ 1 r 1N 1"fN - 1 )ma:c(2ta, te) + ad + 2ta, where d denotes the diameter of the ensemble 
configuration and a :::: 4 [54]. 

The multiplication of rectangular matrices is treated in detail in [66]. Depending on the shape of the 
matrices and the parameters of the machine, any matrix algorithm as outlined above, or a matrix-vector 
algorithm as described below, or the computation of the transpose of the product may be the optimum. 

2.4.2 Multiplication of a full matrix by a triangular matrix 

If A is an upper triangular (or lower triangular) N by N matrix, then only half of the arithmetic operations 
N(N + 1 )/2 are nontrivial. The alignment and multiplication phases of Cannon's algorithm can be interleaved 
such that computations start from one corner of the array and progress towards the opposite corner. The 
total data movement is the same. In this variation of Cannon's algorithm it is convenient to use the notion 
of computational windows. A computational window is defined by the data elements processed concurrently 
by the ensemble nodes. The computational window during step j for an upper triangular matrix A, aij = 0 
for i - j > 0, is shown in Fignre 8. It also shows the computational window for step j, if A is a strict lower 
triangular matrix, aij = 0, ij :::: O. 

From Figure 8 it is obvious that the multiplication A X B and D X B, where A is upper triangular and 
D strict lower triangular of dimension "fN by "fN, or A strict upper triangular and D lower triangular can 
be performed concurrently on a torus of dimension VN by"fN, or a Boolean n-cube. 

2.4.3 Matrix-vector Multiplication 

The matrix multiplication algorithms described above can also be used for matrix-vector multiplication, 
Y = AX. However, the ruuning time is independent of the number of columns of X, and the data movement 
is larger than necessary [54]. An algorithm that on a Boolean cube is of a lower complexity than the 



www.manaraa.com

127 

Figure 8: The computational window at step j for computing C <- A X B + C, A upper triangular, or strict 
lower triangular 

algorithm by Cannon (adapted to a Boolean cube), or the algorithm by Dekel et. al., for a single vector, or 
for a matrix X with few columns is obtained by making A stationary, distributing the elements of X to the 
proper ensemble nodes, and accumulating the partial products over space to yield C in the desired location. 

To outline the algorithm assume A is a VJii X VJii matrix and '" a VJii vector with components "i. 
Assume that the vector", is aligned with the first column of A. First "'i is rotated i steps in the direction of 
increasing column index for i = {O, 1, ... , VJii - I}, then each ",-value is distributed to all nodes in column 
i, and the products computed. Finally, the products are accumulated. Each of these steps can be carried 
out in a time proportional to n. With the matrix embedded by separately encoding row and column indices 
in a Gray code, the shifting is performed in different subcubes, and no communication conflicts occur. The 
routing of elements for a given shift s can be carried out by comparing the Gray codes of i and i + sand 
moving towards the desired address by one dimension at a time in any order. A copy-scan can be used 
within columns. A sum-scan can be used for the accumulation of inner products. Complexity estimates for 
algorithms computing matrix-vector products by accumulating inner products in-space are given in [54] for 
dense matrices, and in [55] for banded matrices. 

2.4.4 Factorization of dense matrices 

The algorithms for Gaussian elimination and Gauss-Jordan elimination described below can be viewed 
as modifications of systolic algorithms [80], [52]. The modification of the symmetric versions of Gaussian 
elimination such as Cholesky's, Crout's, and Doolittle's methods can be carried out in a similar way. Systolic 
algorithms for mesh configured ensembles for Cholesky's method are given in [2], [63], for Given's rotations 
in [30], [33], [2], [59], and for Householder transformations in [51]. Given's and Householder's methods make 
use of unitary transformations and are numericaliy stable. 

The factorization of a matrix A into a lower triangular matrix L and an upper triangular matrix U, 
is carried out such that the product form of L-l is computed, L-I = LN-ILN-2 ... L,. A = LU and 
U", = L-1y. The elements of the factors are stored in the same locations as the elements of the matrix to 
be factored. 

The non-trivial elements of a factor become known after the preceeding factors have been applied to A, 
i.e., lki' k = {i, ... , N - I} equals the corresponding elements of Ai == Li-IA;-I, Ao == A. The application of 
the factors can be pipelined, as is done in systolic algorithms. In Gauss-Jordan elimination the inverse is 
also expressed in product form, A-I = IN-1JN-2 .... JO. The non trivial column of Ji is determined by the 
corresponding column of Ai == Ji-1Ai-l. 

We assume that A is stored in a 2-dimensional array with one element per processor. We first present 
algorithms for 2-dimensional arrays, then describe modifications that can take advantage of the added 
communication capability of a Boolean cube. In the application of Li to Ai row i (the pivot row) is 
distributed to rows k, k > i, and column i to columns I, I > i. In Gauss-Jordan elimination the pivot row 
is distributed to all other rows. If the matrix is of the same dimension as the array, i.e., there is only one 
matrix element per node, then Gauss-Jordan elimination can be completed in the same time as Gaussian 



www.manaraa.com

128 

Figure 9: Storage and distribution of pivot row and column in dense matrix factorization 

elimination. An increasing number of processors become idle in Gaussian elimination. 

For A large compared to the array only the diagonal blocks are diagonalized, with A being stored 
cyclicly. The storage of the pivot row and columns [54] and their distribution is illustrated in Figure 9. 
Each application of a factor is similar to performing a column by row product in the outer product matrix 
multiplication algorithm. 

For each column elimination operation a number of elements need to be distributed along rows, and a 
number along columns. The number of elements distributed along rows equals the number of submatrices 
on and below the diagonal. The number of elements distributed along columns is equal to the number of 
blocks on, and to the right of the diagonal, including the right hand sides. 

A Boolean cube offers a capability of carrying out the distribution of the pivot row to other rows and 
the pivot column to other columns in less than linear time. For the factorization of a matrix by Gaussian 
elimination without partial pivoting this capability does not lower the complexity of the elimination, but 
it does in the event of partial pivoting. However, in forward substitution on multiple right hand sides, and 
in Gauss-Jordan elimination the communication capability of the Boolean cube can be used to reduce the 
complexity of the propagation term. The order of the complexity is still linear in the size of the matrix, which 
is intrinsic to Gaussian elimination without partial pivoting. Faster methods for band matrix problems are 
described in the next section. 

In performing the data distribution in Gaussian elimination, or Gauss-Jordan elimination, without partial 
pivoting the source nodes are consecutively indexed. A correct result is guaranteed, if data arrives in the 
same order as its distribution is initiated. This condition is sufficient, but not necessary for correctness. 
The scan algorithm described earlier guarantees the same order of arrival as that of distribution [55]. Note 
that in Gaussian elimination the distribution for the last several equations only needs to cover successively 
smaller cubes. 

2.4.5 Solution of Triangular Systems 

A number of methods for the solution of general linear recurrences Lz = y (y and z are vectors, L a lower 
triangular matrix) on architectures with global storage have been proposed, and their complexity analyzed, 
assuming zero communication cost. Sameh [115] gives a survey of such algorithms and their properties. We 
present an algorithm for mesh or Boolean cube configured ensembles [50]. It is an adaptation of the binary 
tree algorithm by Johnsson [57], which in turn is a particular instantiation of the column-sweep algorithm 
described by Kuck [77]. We assume that the vectors y and z are stored in row major order, and L in column 
major order (LT is stored in row major order). In the algorithm outlioed below y and z are stationary, L 
communicated along rows, and partial inner products along columns. 

The elements of a column of L are passed along rows of the array. The elements of a column are passed 
in order of increasing row index. The first element of a column of L is used to compute a new component 
of z. Subsequent elements of a row of LT are multiplied by this z component, added to the corresponding 
partial inner product passed along columns in direction of increasing row indices, and the result passed to 



www.manaraa.com

129 

y L 
i=-l 

I Lj Zj 

j=O 

$Li 

i=-l 

[ Lj'Zj+L( Zi 

j=o 

Figure 10: Data movement in a linear recurrence algorithm on a torus 

the next processor in the same column. The first partial inner product that reaches a processor is used to 
update the right hand side, before a new Z is computed. Hence, a processor in row i when first activated 
computes Zi, then computes the product lkizi, adds this product to L:;;;;~ lkjzj received from the preceeding 
row, and outputs the result to the succeeding row. 

This algorithm for solving linear recurrences progresses from one row to the next at the rate td + 2ta, 
ignoring communication time (td is the time for division of two floating-point numbers). For a 2-dimensional 
array of VN by VN processors, the service of a processor is requested for a new row every (td+ 2ta)VN units 
of time. If L is a banded matrix with m nonzero diagonals, then a processor needs a time of td + 2( m - 1 )ta 
to complete the computations for one column of L. The time to solve the linear recurrence by this algorithm 
is approximately 

For banded systems a recurrence solver can also be based on the partitioning method [116]. This approach 
can further reduce the complexity of solving linear recurrences. The partitioning method is discussed further 
in the next section. 

2.4.6 Banded Systelll Solvers 

Tridiagonal systelllS 

Irreducible tridiagonal systems of equations of order P can be solved in 21og2P steps using O(P) arith­
metic operations by odd-even cyclic reduction [15]. The method has been modified by Hockney [47] to yield 
a solution in log2P steps, but at the expense of O(Plog2P) arithmetic operations. For highly concurrent 
ensembles it is of interest to find mappings of the computation graph on to the nodes of the ensemble such 
that the communication complexity is no higher, or at least of the same order as the parallel arithmetic 
complexity. Binary trees, shuflie-exchange networks, and Boolean cubes allow for global communication in 
a time proportional to p for P = 2P - 1 and P = 2P processors respectively. 

The solution of tridiagonal systems on binary trees is interesting not only for the importance of effi­
cient tridiagonal solvers, and the relative simplicity of constructing large tree ensembles, but also from an 
algorithm design point of view. There exists a mapping of the computation graph for cyclic reduction on 
P equations on to a binary tree of P nodes such that the communication complexity is 31og2P [58]. A 
comparable communication complexity is also obtainable on shuffle-exchange networks and Boolean cubes 

[58]. 

The computation graph of cyclic reduction is shown in Figure 11. For P = N mapping the equations on 
to nodes in the tree in inorder for every level of the computation graph, yields a map with the desired order 



www.manaraa.com

130 

Figure 11: The computation graph for odd-even cyclic reduction 

Figure 12: Inorder mapping of cyclic reduction on to a binary tree 

of complexity. The first reduction step requires a time proportional to n, the second a time proportional to 
n - 1, etc. But, the reduction steps can be pipelined, and the total time is proportional to 3n [58], [28]. The 
inorder mapping is shown in Figure 12. 

For P > N several equations must be identified with the same processor node. For load balancing it is 
desirable to make the division as even as possible. For simplicity we assume here that P = 2m N, i.e., that m 
address bits are required for the local address. The consecutive storage scheme can be considered as forming 
a quotient graph from the computation graph by combining a successively indexed nodes at each level of the 
computation graph into a node in the quotient graph. This approach is similar to domain decomposition in 
the solution of partial differential equations. The nodes at each level of the quotient graph are then mapped 
on to the processor tree in inorder. The number of quotient nodes at the leaf level of the computation graph 
with r ~ 1 equations is 2pmodn-l, which corresponds to a pmodn level binary tree. In the formation of the 
quotient nodes the computation graph is effectively partitioned into "vertical" slices, with one quotient node 
per slice and level, for p - n levels starting with the leaf level. The quotient graph approach provides the 
best possible computational balance. 

A critical observation in finding a communication efficient mapping is that the communication between 
some pair of partitions alternates in direction for every level (reduction step) of the computation graph. 
The efficiency of the inorder map relies on the fact that the communication is unidirectional, and can be 
pipelined. Hence, odd -even cyclic reduction applied to this mapping is not efficient, but by changing the 
elimination order to substructured elimination the mapping is effective. Only one communication is required 
in the substructuring phase. The amount of fill-in is approximately the same as in odd-even cyclic reduction, 
and so is the arithmetic complexity. The reduced system is then solved by cyclic reduction using an inorder 
map. The total complexity is of order O( ~ + n) [58,62]. 

The substructured algorithm is of minimum order of complexity, both with respect to communication 
and arithmetic. For a diagonally dominant system the the diagonal dominance increases during substructur­
ing [108] and no or only a few reduction steps may be sufficient. If a few cyclic reduction steps suffice, then 
a proximity preserving embedding [109] of the quotient graph may be advantages. The reduction in compu­
tational complexity accomplished by truncating the reduction process is relatively much more significant in 
a highly concurrent system than in a single processor system. For P = N the running time is proportional 
to the reduction steps executed, while on a single processor half of the total (untruncated) execution time is 



www.manaraa.com

131 

-r----
,,/ I 

0F----'---r l""- - ~-
I I 
I I 

: / ... ~ 
I ". 
"'-'--

Figure 13: Cyclic reduction on a Boolean cube 

spent in the first reduction step, a quarter in the second, etc. The speed-up for cyclic reduction and P = N 
is O( lo:'N)' but approaches O( N) if the reduction process can be terminated after a fixed number of steps, 
as in strongly diagonally dominant systems. 

On a Boolean cube substructured elimination with odd-even cyclic reduction for the reduced system 
has a communication complexity O( n). Each step of the cyclic reduction algorithm involves 3 nodes of the 
computation graph. An embedding according to a binary encoding would require communication across n 
edges for the first step of the algorithm, n - 1 edges for the 2nd step, n - 2 for the 3rd step, etc. The 
binary-reflected Gray code also allows for simple, distributed control. Each processor can determine with 
which neighboring processor to communicate, and what information shall be transmitted/received from its 
address, and the reduction step currently being executed [58,62]. Because of the properties of the binary­
reflected Gray code each step requires only 2 routing steps. One of these routing steps can be carried out 
as an exchange operation (but need not be). In such a case successive levels of the computation graph are 
mapped into subcubes of monotonely decreasing dimensionality. For P = N all processors participate in 
the first reduction step, about half of which only perform communication. The equations participating in 
the second reduction step are moved to one half of the cube, and the process is repeated recursively. Figure 
13 illustrates a few steps in the reduction process for P = N = 8. 

Odd-even cyclic reduction has a higher arithmetic complexity than Gaussian elimination, and it also 
requires more communications than if a transposition of the data is performed to one processor, and the 
result distributed back to where the equations came from. Hence, for certain combinations of arithmetic 
and communication capabilities it may be faster to use a transposition and a sequential algorithm, and even 
to avoid substructuring [113,67]. 

If multiple independent tridiagonal systems are to be solved, then either all problems can be distributed 
over the entire ensemble, or the ensemble can be logically partitioned such that each problem is solved by 
a partition. For tridiagonal systems and the solution methods discussed here, it is always advantageous to 
partition the ensemble, even in the event of negligible communication time [58]. 

A detailed experimental study of optimum methods for the solution of single and multiple tridiagonal 
systems on the Intel iPSC is reported in [67]. 

General Banded Systems 

The substructuring technique is has also been applied to banded systems. Sameh and collaborators 
[116,83,25] use partitioning to reduce banded systems of bandwidth 2m + 1 to dense, block pentadiagonal, 
systems of order 2mN - 1 for N partitions. The blocks are of size m X m. The solution of the reduced 
system by Gaussian elimination on a linear array is considered in [83], and the solution by block-Jacobi 
and preconditioned conjugate gradient methods in [25]. Reiter and Rodrigue [108], and Johnsson [61,60,24] 
analyze a slightly different subs true turing that reduces the banded system to a dense, block tridiagonal 
system of order mN. Reiter and Rodrigue give conditions under which diagonal dominance is preserved 
during the Gaussian elimination part of the algorithm. J ohnsson shows that the arithmetic complexity in 
deriving the tridiagonal system is approximately 1/3 of that required in deriving the pentadiagonal system, 
and analyze the complexity of solving the reduced system by Gaussian elimination and block cyclic reduction 



www.manaraa.com

132 

I- - --

Figure 14: Band matrix factorization on a 2-dimensional array or Boolean cube 

on linear arrays, binary trees, shuffle-exchange networks and Boolean cubes. 

The optimum number of partitions Nap, depends on m, P, and the ratio of the communication and 

computation bandwidths. Nap, for Gaussian elimination on a linear array is of order O(~) and the 

corresponding complexity is of order 0 (m2~). Block cyclic reduction yields a lower complexity under 
a variety of conditions, even on a linear array. The value of Nap, falls in the range O(v'P) ~ Nap, ~ O(~), 
and the corresponding complexity is in the range O(m2v'P + m31og2P) to O(m3 + m31og2~) [61]. For 
binary trees, shuffle-exchange networks, and Boolean cubes Nap, is of order O(~) and the corresponding 
complexity of order O(m3 + m31og2~). For small matrix bandwidths this algorithm yields good speed-up, 
but as the bandwidth increases the speed-up becomes low. 

The above results apply under the assumption that there is one processor per partition. The number of 
partitions is constrained to be at most ~. However, it is possible to exploit concurrency in the operations 
also within the partitions, which for m of order O(P) is the main source of concurrency. For instance, one 
can use Nc ~ m 2 processors configured as a mesh or a Boolean cube during the elimination of the elements 
in one column, as in systolic algorithms [80] [52], but use the dual formulation in which the factors are 
computed in-place. The speed-up is of order N c• The computations proceed in two phases: factorization 
with forward substitution, and backsubstitution. The factorization can proceed from the first to the last 
column, or from both ends concurrently. In the latter case an m by m dense system of equations must be 
solved for the "middle" equations before backsubstitution takes place. A dense m by m system is also solved 
in the I-way elimination scheme (the last m equations). The backsubstitution consists of solving a linear, 
banded recurrence. The technique discussed previously can be used. Figure 14 illustrates an intermediate 
state of the factorization process. 

The scan algorithm can be used to reduce the propagation time for a Boolean cube, and multiple right 
hand sides. The propagation time then becomes of lower order even in the case of Nc = m 2 , and P '" m. The 
complexity of solving banded systems by this approach is O(m2f) (N = 1) [55]. For symmetric matrices 
storage as well as time can be saved using a parallel version of Cholesky's method [2], [63]. 

The two methods can be combined such that Nc processors are used for each partition. Such a set of 
processors is referred to as a cluster. With -It clusters of Nc processors each, intracluster connections in 
the form of a 2-dimensional mesh (or torus) or Boolean cube, and intercluster connections forming a binary 
tree, shuffle network, or Boolean cube, the minimum time complexity is of order O(m + mlog2~)' and Nap, 
of order O(Nc~), and N cop, of order O(m2) [55]. Note that for a Boolean cube a sub cube can be considered 
as a cluster. 

The combined algorithm degenerates to the simple band matrix algorithm proceeding along the band 
from one corner to the other for m = P - 1. For m = 1 it degenerates to the tridiagonal solver described 
previously. 



www.manaraa.com

133 

2.4.7 Fast Poisson Solvers 

Fast Poisson solvers combine Fast Fourier Transforms (FFT) with tridiagonal system solvers, and block 
cyclic reduction to achieve a minimum arithmetic complexity of order O( Plog210g2P) for a P X P grid 
[45], [46], [124]. Stone [123] observed that the FFT can be carried out in IOg2P steps on a P-node shuffle­
exchange network. The modification of Stone's algorithm for a Boolean cube is straightforward. Shuffle 
operations become unnecessary. The butterfly operations are simply carried out on elements residing in 
processors adjacent in different dimensions. This property holds for decimation-in-time (DIT) as well as 
decimation-in-frequency (DIF) FFT. 

With multiple elements per processor the initial (and transformed) sequence can be stored in either 
consecutive or cyclic storage order. In either case, and depending on whether a DIT or a DIF FFT is used 
the first, or the last, log2 Jl butterfly operations are local to a node. The arithmetic complexity is of order 
O( ~log2P) and the communication complexity is of order O( ~IOg2P). The speed-up is proportional to P. 
FFT algorithms for linear arrays are given in a number of references [104], [68], [64]. An early description 
of a FFT on a 2-dimensional array is given by Stevens [122]. An analysis of the area-time aspects of the 
FFT on a variety of ensemble configurations is given in [127]. 

The solution of Poisson's problem on a rectangle can be obtained by a 2-dimensional FFT, by a number 
of 1-dimensional FFTs that decouple the equations into a set of independent tridiagonal systems, or by a 
combination of block cyclic reduction, FFT, and tridiagonal system solvers, and the so called FACR method 
[45], [46], [15], [14], [124], [125], [126]. By exploiting symmetries and using real transforms the number of 
arithmetic operations per point is less than 2.510g2P in the FFTcomputation. Using Gaussian elimination 
with precomputed factors [125] the number of arithmetic operations per point for the tridiagonal solvers is 
4, or approximately 4 if advantage is taken of the fast convergence of the elements of the factors [99]. Hence, 
the arithmetic operations count is less for solving the tridiagonal systems by Gaussian elimination than by 
FFT, solution of a diagonal system, and inverse FFT (IFFT). A cyclic reduction algorithm could be used, 
but the operations count per point with precomputed factors is 6. 

In a highiy concurrent system the differences in complexity between the FFT and tridiagonal system 
solvers are much smaller. To amplify this issue consider the case with p2 nodes in an ensemble configured 
as a Boolean cube. The solution of Poisson's equation either by a 2-dimensional FFT, or by a combination 
of 1-dimensional FFT's and tridiagonal system solvers based on cyclic reduction, then requires a time of 
order O(log2P), including communication. For this extreme case Gaussian elimination is not of interest 
with respect to computational complexity, since it is inherently sequential. The number of communications 
in the Boolean cube is 210g2P for odd-even cyclic reduction on P equations, which can be reduced to 
IOg2P for parallel cyclic reduction [47]. Even though it seems preferable to use parallel cyclic reduction, 
this is not necessarily true [56]. With a binary-reflected Gray code embedding of the equations each such 
communication, but the first is over two edges. In a packet switched communication system the number 
of communications is 410g2P and 210gp , respectively. It suffices with 410g2P communications even if the 
communication system only supports one send or one receive operation at a time. In the case of the Poisson 
equation only the right hand side need to be transferred. The number of real arithmetic operations is at 
most 7log2P, which can be reduced to 610g2P with precomputed factors. 

With p 2 processors a real FFT on P points requires 510g2P - const operations per point, if the butterfly 
computations are split between two processors, otherwise 10log2P - const. In the former case two exchanges 
are required per butterfly, otherwise one exchange suffice. If the communication system only supports one 
send or one receive operation, then each exchange requires two communications. With a binary encoding 
of the lattice all communications are over single edges, but if the lattice is embedded by a binary-reflected 
Gray code embedding then the communication is over two edges. Hence, an FFT and an inverse FFT on P 
points require between 210g2P and 1610g2P communications depending on the communication system, the 
embedding, and the load balancing. Each communication involves a complex variable. 

Using a tridiagonal solver instead of an FFT-IFFT saves at least 310gp to 410g2P arithmetic operations 
and maybe also communication (depending upon the architecture). In the FFT-IFFT approach all nodes 
are used in all steps, but in the cyclic reduction tridiagonal system solver the number of active nodes 
decreases. Most of the tridiagonal systems are sufficiently diagonally dominant that the reduction process 



www.manaraa.com

134 

can be truncated. This property does not reduce the total solution time in this extreme case (P2 processors 
for p2 lattice points). With fewer processors it gives rise to an interesting load balancing problem. 

Sameh [114] presents a method for the solution of the 2·dimensional Poisson equation on a ring of 
processors, and for the solution of the 3·dimensional problem on a cylinder of processors. In the 2-dimensional 
case FFT's are performed on data local to a processor, and the tridiagonal systems solved by a modification 
of the partitioning method [116J. The modification is made to take advantage of the Toeplitz form of the 
tridiagonal matrices. The reduced systems are solved by pipelined Gaussian elimination within the ring. 
In the 3-dimensional case I-dimensional FFT's are performed, first local to a processor, then a new set 
of I-dimensional FFT's are performed within a ring, resulting in p2 independent tridiagonal systems, with 
each tridiagonal system spread across the rings. The tridiagonal systems are solved by Gaussian elimination. 

Whether Gaussian elimination or cyclic reduction is preferable with respect to computational complexity 
for the solution of the tridiagonal systems depends on the ensemble topology, N, P, and the arithmetic rate, 
the communication rate, and the overhead in these operations. Gaussian elimination requires 41]; + 2P + 
aVN for a VN X VN mesh, substructuring with Gaussian elimination for the reduced system requires 
91]; + 4~ + (2 + a)VN, and substructuring with cyclic reduction for the reduced system on a Boolean 

n-cube 91];+ ~(3+2a)log2N. Precomputed coefficients are assumed for these estimates. Cyclic reduction 
for the reduced system becomes competitive for N approaching P on a Boolean cube configured ensemble 
[58,62]. On a linear array the logarithmic term premultiplied by a is replaced by a term linear in ffi, 
as for Gaussian elimination. Which method is preferable on a linear array is critically dependent upon 
architectural parameters, N, and P. An accurate comparison should also account for the truncation of the 
reduction process for a large fraction of the systems. With respect to performance the benefit of truncating 
the reduction process is particularly large on linear arrays, since the largest communication expense occurs 
in the last few reduction steps using an in-place algorithm [58]. 

2.4.8 Iterative methods 

Conjugate Gadient Methods 

The conjugate gradient method [36J is a direct method for the solution of linear systems of equations. 
However, it is often used as an iterative method, and combined with preconditioning is an effective iterative 
technique, in particular for sparse systems. The conjugate gradient method solves a linear system of P 
equations in P steps. Each step requires O(PZ) arithmetic operations for a system A", = y in which A has 
PZ non-zero elements. Hence, the arithmetic complexity is of the same order as for elimination methods, 
Given's rotations, and Householder transformations if the matrix A is dense. But, because of fill-in in those 
methods, the conjugate gradient method often yields a lower complexity for sparse systems, in particular if 
acceptable accuracy in the solution is obtained in less than P steps (possibly much fewer steps). 

The minimum time per iteration is O(lOg2P) because of global communication in each step. In each 
iteration an inner product including the entire state is computed, and used (distributed to all processors) 
in the computation of the new state. Pipelining of successive steps is not possible. The minimum parallel 
arithmetic complexity of the conjugate gradient method is O(Plog2P), the same order as that of House­
holder's method. Preconditioning that would allow the iterative process to be terminated in less than !o~P 
steps could possibly yield a lower complexity, but the complexity of each step has to be included. With the 
original system matrix used as a preconditioner one iteration suffices, but the original system of equations 
has to be solved in that step. 

So far very few studies have been carried out for parallel versions of the conjugate gradient method. 
Adams [?J has investigated the convergence of various preconditioners, and in particular their feasibility 
with respect to implementations on the Finite Element Machine. Saad and Sameh have investigated the 
conjugate gradient method on multiprocessors with shared global storage [112J, and linear arrays [111J. 
The implementation of the preconditioned conjugate gradient method with various preconditioners has also 
been investigated by Kamath and Sameh [70J. They consider the solution of 2-dimensional elliptic partial 
differential equations on a ring of processors, and the solution of the 3-dimensional problem on a torus. The 
adaptation of the conjugate gradient method to binary tree architectures is described by Johnsson [57J. The 



www.manaraa.com

135 

effect of preconditioning on the computational complexity is analyzed. Van Rosendale [110] has proposed a 
modification of the inner product computation in which it is computed recursively. Only local computations 
are carried out in each step. However, global communication is still required in each step. 

Asynchronous methods 

In the classical iterative methods a number of matrix vector products are computed. Each such product 
requires global communication. In a highly concurrent system this global communication will limit the speed­
up, unless several iteration steps can be pipelined. A large fraction of the processors in the ensemble are idle. 
So called asynchronous iterative methods, or chaotic relaxation, attempt to fully exploit the concurrency in 
mnltiprocessor systems by not enforcing global synchronization between each step of the iterative process. 
Chazan and Miranker [18] give necessary and sufficient conditions for convergence of chaotic relaxation 
applied to the solution of linear systems of equations. The resnlts are extended by Miranker [95]. Baudet 
[6] gives necessary and sufficient conditions for convergence for nonlinear problems, and history dependent 
iterations, and some bounds on the efficiency, as well as some experimental results obtained on the C.mmp 
[133]. Recently, asynchronous iteration has also been studied by Lubachevsky and Mitra [92]. 

3 Summary 

The capacity of an ensemble configuration can be measured in several different ways. One way is to measure 
the time required to perform arbitrary permutations. Such permutations of P elements on a binary tree of 
P nodes may require a time proportional to P + O(log2P). Arbitrary permutations can be performed on 
a 2-dimensional mesh in time 6..;p [128], on the shuflle-exchange network in time log2P(log2P - 1), and 
on the Boolean cube in time t1og2P(log2P + 1) using the deterministic algorithm of Batcher, or with high 
probability in clog2 P time for c a small integer using a randomized algorithm. The cube connected cycles 
network has the same capability of performing arbitrary permutations. 

Another way to measure the capability of an ensemble configuration is to determine to what extent one 
configuration can emulate another without a substantial increase in running time. Of the networks discussed 
here the, Boolean cube and the Cube Connected Cycles networks are the most powerfnl. The tree network 
is significantly less powerful in that the running time for many algorithms is higher by more than a constant 
factor. 

The diameter of a configuration gives a lower bound for the time required for a given operation. Whether 
the diameter appears as an additive term or multiplicative factor in treating "large" problems on "small" 
ensembles depends on how communication paths with distinct origins and destinations intersect. We il­
lustrated this point by forming a matrix transpose on a 2-dimensional mesh with end-around connections 
and on a Boolean cube. The transpose of a VN X VN matrix can be formed in ~VN - 1 routing steps 
on the mesh configured ensemble, and log2N routing steps on the Boolean cube. This difference becomes 
significant first for fairly large N. However, the transpose of a P X P matrix on a VN X VN mesh requires 

a time of at least order ~,and at most H -!N l' + 1(1/2VN -1) routing steps [50]. On the Boolean cube 

the transpose can be performed in UP overVN1' + log2N - 1) routing steps, an improvement by a factor 
of approximately VN / 4 over the mesh. 

The finite communication capability of ensemble configurations affects the performance adversely, some­
times significantly. The time for arithmetic operations decreases, but the time for communication may 
increase with the ensemble size. For most ensemble configurations and computations there exists an opti­
mum size of the ensemble beyond which the performance decreases. For instance, in the case of the solution 
of tridiagonal systems of equations by combining Gaussian elimination and cyclic reduction the optimum 

sizes and minimum solution times are as follows for a few configurations: linear array Nap, "" f3jf; and 

Tmin"" ,",(..;p, 2-dimensional mesh Nap, "" f3(P a)2/a and Tmin "" ,",(pI/a, binary tree, shuflle-exchange, and 
Boolean cube networks Nap, "" f3P/1 + a and Tmin "" ,",(log2P, where a is the ratio between the arithmetic 
and communication bandwidths [58]. For band matrix solvers based on the partitioning techuique the op­
timum number of processors configured as a linear array is of order O( V P/m) for matrices of bandwidth 
2m+ 1, and O(P/m) for binary tree, shuflle-exchange and Boolean cube networks. The corresponding solu-



www.manaraa.com

136 

tion times are of order O(m2,;:p;:;;:) and O(m3 + m 3 /og2(P/m)), respectively [54]. For ensembles configured 
as Boolean cubes, band matrix solvers of complexity O( m + mlog2 t;;) can be devised [58]. 

With insufficient number of interconnections, or with inappropriate topology, different embedding strate­
gies may have to be applied not only for different problems, but also for different phases of a given algorithm. 
Of relevance for many computations is the embedding of I-dimensional, or multidimensional arrays. Linear 
arrays can be embedded in binary trees preserving proximity, but for d-dimensional arrays embedded in 
the leaves of the tree the average distance between nodes adjacent in the mesh is (4 - 2- [log,nJ)d when 
embedded in the tree. The maximum distance is of order O(dlog2n). Both I·dimensional and multidimen· 
sional arrays can be embedded in Boolean cubes preserving proximity. If the number of elements in each 
dimension is slightly less than or equal to a power of 2, then this embedding is also efficient in terms of 
processor utilization. For the embedding of arbitrary meshes see [42,43]. The impact of a given embedding 
on performance is in some instances determined by the average distance between array nodes, whereas in 
others it is determined by the maximum distance. 

Ensemble architecture algorithms can be obtained by first generating a computation graph from a de­
scription of the computation in a conventional mathematical notation, and then mapping this graph on to 
the ensemble. This mapping process has many characteristics in common with the mapping carried out 
in finding efficient systolic algorithms. But, there are also several aspects of the mapping of computation 
graphs on to ensemble architectures that do not require attention in the systolic case. One similarity is the 
need to treat temporal as well as spatial aspects of computations, with a nonuniform access time to different 
parts of the storage. Preserving locality is also important in both architectures. However, the embedding 
of the computation graph in an ensemble architecture often has to satisfy additional criteria compared to 
what is required in the systolic case in order to yield maximum processor utilization, or minimum solution 
time. The need for different embedding strategies during different phases of the execution of an algorithm 
may depend on the size of the problem relative to the size of the ensemble, as in the case of cyclic reduction. 

With the additional sequencing of operations caused by mapping several nodes of a given level of the 
computation graph on to the same ensemble node, instead of distinct nodes as in the systolic case, in· 
dependence of communication paths becomes an issue. If communication paths with distinct origins and 
destinations intersect at nodes ouly, and the processor can support concurrent cornmuuication on all its 
ports, then communication actions can be pipelined to a maximum ~xtent. In effect, the ensemble is con· 
figured optimally for the desired operation. This issue was illustrated by performing a matrix transpose on 
a Boolean cube. 

Another difference compared to algorithms of extremely fine grain is that whereas in such a case an 
efficient parallel algorithm may be ideal, in particular if it can be mapped on to an ensemble with only local 
communications without loss of efficiency, this is not necessarily true on an ensemble architecture. More 
operations are carried out in sequence, and the sequential operations count may be higher for an algorithm of 
mi.uirnum parallel complexity than fot a sequential algorithm of minimum complexity. For instance, bitonic 
sort requires O(N/og~N) operations compared to O(Nlog2N) operations for a good sequential sort. In the 
case of tridiagonal system solvers, cyclic reduction requires approximately twice the number of operations 
needed by Gaussian elimination. A combination of algorithms may yield a lower complexity than any single 
algorithm. In some instances, such as in the solution of tridiagonal systems by elimination methods, it 
may be possible to obtain the combined algorithm by algorithm transformation techniques. Elementary 
rules of algebra may be used to reduce the number of arithmetic operations carried out seqnentially, as in 
mapping the computation of the Discrete Fourier transform on to a linear array. The result is an FFT 
algorithm with defined data and control structure [65]. However, the most interesting aspects of algorithm 
transformation techniques is that a user may not have to worry about all the minute variations of algorithms 
and architectural details, and that for ensemble architectures more efficient algorithms may be discovered. 

In the architectural model used here it is essential that the control of execution is distributed, in order 
to prevent bottlenecks and avoid sources of limited scalability. All of the algorithms presented here have 
local control, including the routing algorithms. The architecture allows each node to execute a substantially 
different piece of code. However, in most of the concurrent algorithms we know there is a high degree 
of regularity, not only in the communication pattern, but also in the instruction streams being executed. 
Typically there are 3 - 4 different pieces of code. In algorithms for 2-dimensional meshes boundary nodes 



www.manaraa.com

137 

often perfonn somewhat different tasks, like computing rotation factors in the case of Given's method. In 
binary tree algorithms the root, the leaves, and the intermediate level nodes often have their unique pieces 
of code [12]. This characteristic also simplifies the problem of downloading code if the ensemble serves as an 
attached processor. The code can be replicated within the ensemble [90], and thereby considerably reduce 
the potential bottleneck caused by external input/output operations. 

A large class of problems not discussed here is that of computations with data dependent control flow. 
For data independent computations it is possible in principle to map the computations on to the nodes in 
the multiprocessor system at "compile time". For simple problems mappings that are optimal with respect 
to some criteria, like time, can be found at a small or moderate expense. However, finding optimal mappings 
for most problems is, in general, an NP-complete problem. For data dependent computations good strategies 
for run time mappings of computations on to processors are needed. To avoid potential bottlenecks it is 
desirable that load balancing use only local information, and that global information is gathered through a 
sequence of local communications. 

Acknowledgement 

The author is grateful to Andrea Pappas for assistance with the illustrations. The author is also indebted 
to the Office of Naval Research for providing financial support under contract NOOOI4-84-K-0043. 

References 

[1] Loyce Adams. Iterative Algorithms for Large Sparse Linear Systems on Parallel Computers. Technical 
Report 166027, NASA Langley Research Center, 1982. 

[2] Hassan M. Ahmed, Jean-Marc Delosme, and Martin Morf. Highly concurrent computing structures 
for matrix arithmetic and signal processing. Computer, 15:65-82, January 1982. 

[3] R. Aleliunas. Randomized parallel computation. In ACM Symposium on Principles of Distributed 
Computing, pages 60-72, ACM, 1982. 

[4] A.V. Aho A.V., John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms. Addison­
Wesley, 1983. 

[5] Kenneth E. Batcher. Sorting networks and their applications. In Spring Joint Computer Conference, 
pages 307-314, IEEE, 1968. 

[6] Gerald M. Baudet. Asynchronous iterative methods for multiprocessors. J. A CM, 25(2):226-244, 
1978. 

[7] Sandeep N. Bhatt, F.R.K. Chung, F. Tom Leighton, and Arnold L. Rosenberg. Optimal Embeddings of 
Binary Trees in the Boolean Hypercube. Technical Report YALEU/CSD/RR-, Yale University, Dept. 
of Computer Science, December 1985. 

[8] Sandeep N. Bhatt and nse I.F. Ipsen. How to Embed Trees in Hypercubes. Technical Re­
port YALEU/CSD/RR-443, Yale University, Dept. of Computer Science, December 1985. 

[9] Sandeep N. Bhatt and Charles E. Leiserson. Minimizing the Longest Edge in a VLSI Layout. Technical 
Report MIT VLSI Memo 82-86, MIT, 1982. 

[10] Smith B.J. Architecture and applications of the hep multiprocessor computer system. In Real-Time 
Signal Processing IV, Proc of SPIE, pages 241-248, 1981. 

[11] Richard P. Brent and H.T. Kung. On the area of binary tree layouts. Information Processing Letters, 
11(1 ):44-46, 1980. 



www.manaraa.com

138 

[12] Sally A. Browning. The Tree Machine: A Highly Concurrent Computing Environment. Teclmical 
Report 1980:TR:3760, Computer Science, California Institute of Technology, January 1980. 

[13] P. Budnik and David J. Kuck. The organisation and use of parallel memories. IEEE Trans. Computer, 
C-20:1566-1569, December 1971. 

[14] Billy L. Buzbee. A fast poisson solver amenable to parallel computation. IEEE Trans. Computers, 
C-22:793-796, 1973. 

[15] Billy L. Buzbee, Gene H. Golub, and C W. Nielson. On direct methods for solving poisson's equations. 
SIAM J. Numer. Anal., 7(4):627-656, December 1970. 

[16] L.E. Cannon. A Cellular Computer to Implement the Kalman Filter Algorithm. PhD thesis, Montana 
State University, 1969. 

[17] Peter R. Capello and Kenneth Steiglitz. Unifying VLSI Array Design with Linear Transformations of 
Space- Time. Technical Report TRCS83-03, UC Santa Barbara, Dept of Computer Science, May 1982. 

[18] D. Chazan and Willard L. Miranker. Chaotic relaxation. Linear Algebra and its Applications, 2:199-
222,1969. 

[19] Marina C. Chen. Synthesizing systolic designs. In 2nd InternationalSymposium on VLSI Technology, 
Systems, And Applications, IEEE Computer Society, 1985. 

[20] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, and T. Blackadar. Performance measure­
ments on a 128-node butterfly parallel processor. In Proceedings of the 1985 International Conference 
on Parallel Processing, pages 531-540, IEEE Computer Society, 1985. 

[21] E. Dekel, D. Nassimi, and Sartaj Salmi. Parallel matrix and graph algorithms. SIAM J. Computing, 
10:657-673, 1981. 

[22] Jean-Marc Delosme and llse C.P. Ipsen. An illustration of a methodology for the construction of 
efficient systolic architecture in vlsi. In 2nd InternationalSymposium on VLSI Technology, Systems, 
And Applications, IEEE Computer Society, 1985. 

[23] R.A. DeMillod, Stanley C. Eisenstat, and Richard J. Lipton. Preserving average proximity in arrays. 
Communications of the A CM, 21:228-231, March 1978. 

[24] Jack Dongarra and S. Lennart Johnsson. Solving banded systems on a parallel processor. Parallel 
Computing, 1987. Presented at International Conference on Vector and Parallel Computing, 1986. 

[25] Jack J. Dongarra and Ahmed H. Sameh. On Some Parallel Bandded System Solvers. Technical 
Report ANL/MCS-TM-27, Argonne National Laboratories, 1984. 

[26] J.O. Eklundh. A fast computer method for matrix transposing. IEEE Trans. Computers, C-21(7):801-
803, 1972. 

[27] Michael J. Fischer. Efficiency of Equivalence Algorithms, pages 153-167. Plenum Press, 1972. 

[28] Dennis Gannon and John Van Rosendale. On the impact of communication complexity in the design 
of parallel numerical algorithms. IEEE Trans. Computers, C-33(12):1180-1194, December 1984. 

[29] W. Morven Gentleman. Some complexity results for matrix computations on parallel processors. J. 
ACM, 25(1):112-115, January 1978. 

[30] W. Morven Gentleman and H.T. Kung. Matrix triangularization by systolic arrays. In Real-Time 
Signal Processing IV, Proc. of SPIE, pages 19-26, SPIE, 1981. 



www.manaraa.com

139 

[31] Allan Gottlieb, R. Grishman, Clyde P. Kruskal, K.P. McAuliffe, 1. Rudolph, and M. Snir. The 
nyu ultracomputer . designing an mimd shared memory parallel computer. IEEE Trans. Computers, 
C-32(2):175-189, 1983. 

[32] J. W. Greene and A. El Gamma!. Area and delay penalties in restructurable wafer-scale arrays. In 
Third Caltech Conference on VLSI, pages 165-184, Computer Sciences Press, 1983. 

[33] Donald E. Heller and llse C.P. Ipsen. Systolic networks for orthogonal equivalence transformations and 
their applications. In P. Penfield Jr, editor, Proceedings, Advanced Research in VLSI, pages 113-122, 
Artech House, 1982. 

[34] John L. Hennessey, N. Jouppi, Forrest Baskett, and J. Gill. Mips: a vlsi processor architecture. In 
VLSI Systems and Computations, pages 337-346, Computer Sciences Press, 1981. 

[35] John L. Hennessey, N. Jouppi, S. Przybylski, and C. Rowen. Design of a high performance vlsi 
processor. In Proc. of the Third Caltech Conference on VLSI, pages 33-54, Computer Sciences Press, 
1983. 

[36] M.R. Hestenes and E. Stiefel. Methods of conjugate gradient for solution of linear systems. J. Res. 
Nat. Bur. Standards, 49:409-436, 1952. 

[37] W. Daniel Hillis. The Connection Machine. MIT Press, 1985. 

[38] W. Daniel Hillis. The Connection Machine. Technical Report Memo 646, MIT Artificial Intelligence 
Laboratory, 1981. 

[39] W. Daniel Hillis and Guy L. Steel. Data parallel algorithms. Communications of the CA CM, 29:1170-
1183, December 1986. 

[40] Daniel S. Hirschberg. Fast parallel sorting algorithms. Communications of the ACM, 21(8):657-661, 
1978. 

[41] Ching-Tien Ho and S. Lennart Johnsson. Matrix Transposition on Boolean n-cube Configured En­
semble Architectures. Technical Report YALEU/CSD/RR-494, Yale University, Dept. of Computer 
Science, September 1986. 

[42] Ching-Tien Ho and S. Lennart Johnsson. On the embedding of arbitrary meshes in boolean cubes 
with expansion two dilation two. In Int. Conf.on Parallel Processing, IEEE Computer Society, 1987. 

[43] Ching-Tien Ho and S. Lennart Johnsson. On the Embedding of Meshes in Boolean Cubes. Technical 
Report YALEU /CSD/RR-, Yale University, Dept. of Computer Science, In preparation 1986. 

[44] Ching-Tien Ho and S. Lennart Johnsson. Spanning Graphs for Optimum Broadcasting and Personal­
ized Communication in Hypercubes. Technical Report YALEU/CSD/RR-500, Yale University, Dept. 
of Computer Science, November 1986. 

[45] Roger W. Hockney. A fast direct solution of poisson's equation using fourier analysis. J. ACM, 
12:95-113, 1965. 

[46] Roger W. Hockney. The potential calculation and some applications. Methods Comput. Phys., 9:135-
211, 1970. 

[47] Roger W. Hockneyand C.R. Jesshope. Parallel Computers. Adam Hilger, 1981. 

[48] Briggs F.A. Hwang K., editor. Computer Architecture and Parallel Processing. McGraw-Hill, 1984. 

[49] S. Lennart Johnsson. Combining parallel and sequential sorting on a boolean n-cube. In International 
Conference on Parallel Processing, pages 444-448, IEEE Computer Society, 1984. Presented at the 
1984 Conf. on Vector and Parallel Processors in Computational Science II. 



www.manaraa.com

140 

[50J S. Lennart Johnsson. Communication efficient basic linear algebra computations on hypercube ar­
chitectures. Journal of Parallel and Distributed Computing, 4(2):133-172, April 1987. Report 
YALEU/CSD/RR-361, January 1985, Dept. of Computer Science, Yale University. 

[51J S. Lennart Johnsson. A computational array for the qr-method. In Jr. P. Penfield, editor, Proc., Conf. 
on Advanced Research in VLSI, pages 123-129, Artech House, January 1982. 

[52J S. Lennart Johnsson. Computational Arrays for Band Matrix Equations. Technical Re-
port 4287:TR:81, Computer Science, California Institute of Technology, May 1981. 

[53J S. Lennart Johnsson. Data Permutations and Basic Linear Algebra Computations on Ensemble Ar­
chitectures. Technical Report YALEU/CSD/RR-367, Yale University, Dept. of Computer Science, 
February 1985. 

[54J S. Lennart Johnsson. Dense matrix operations on a torus and a boolean cube. In The National 
Computer Conference, July 1985. 

[55J S. Lennart Johnsson. Fast Banded Systems Solvers for Ensemble Architectures. Technical Re­
port YALEU/CSD/RR-379, Department of Computer Science, Yale University, March 1985. 

[56J S. Lennart Johnsson. Fast pde solvers on fine and medium grain architectures. In Int. Assoc. for 
Mathematics and Computers in Simulation, page, !MACS, 1987. 

[57J S. Lennart Johnsson. Highly concurrent algorithms for solving linear systems of equations. In Elliptic 
Problem Solving II, Academic Press, 1983. 

[58J S. Lennart Johnsson. Odd-Even Cyclic Reduction on Ensemble Architectures and the Solution Tridiag­
onal Systems of Equations. Technical Report YALE/CSD/RR-339, Department of Computer Science, 
Yale University, October 1984. 

[59J S. Lennart Johnsson. Pipelined linear equation solvers and vlsi. In Microelectronics '82, pages 42-46, 
Institution of Electrical Engineers, Australia, May 1982. 

[60J S. Lennart Johnsson. Solving narrow banded systems on ensemble architectures. ACM TOMS, 
11(3):271-288, November 1985. Also available as Report YALEU/CSD/RR-418, November 1984. 

[61J S. Lennart Johnsson. Solving Narrow Banded Systems on Ensemble Architectures. Technical Re­
port YALEU/CSD/RR-343, Dept. of Computer Science, Yale University, November 1984. 

[62J S. Lennart Johnsson. Solving tridiagonal systems on ensemble architectures. SIAM J. Sci. Stat. 
Comp., 8(3):354-392, May 1987. Report YALEU/CSD/RR-436, November 1985. 

[63J S. Lennart Johnsson. Vlsi algorithms for doolittle's, crout's and cholesky's methods. In Interna­
tional Conference on Circuits and Computers 1982, ICCC82, pages 372-377, IEEE, Computer Society, 
September 1982. 

[64J S. Lennart Johnsson and Danny Cohen. An algebraic description of array implementations of 1ft 
algorithms. In 20th Allerton Conference on Communication, Control, and Computin9, Electrical 
Engineering, University of Illinois, Urbana/Champaign, 1982. 

[65J S. Lennart Johnsson and Danny Cohen. Mathematical Approach to Computational Networks fOT the 
Discrete Fourier Transform. Technical Report, Department of Computer Science, Yale University, 
1984. 

[66J S. Lennart Johnsson and Ching-Tien Ho. Matrix multiplication on boolean cubes using generic 
communication primitives. In Parallel Processing and Medium Scale Multiprocessors, SIAM, 1987. 
YALEU /CSD /RR-530. 



www.manaraa.com

141 

[67] S. Lennart Johnsson, Ching-Tien Ho, and Faisal Saied. Multiple tridiagonal systems, the Alternating 
Direction Method, and Boolean cube configured multiprocessors. Technical Report, Yale University, 
In preparation 1987. 

[68] S. Lennart Johnsson, Uri Weiser, Danny Cohen, and Al Davis. Towards a formal treatment of vlsi 
arrays. In Proceedings of the Second Caltech Conference on VLSI, pages 375 - 398, Caltech Computer 
Science Department, January 1981. 

[69] Hwang K., editor. Supercomputers: Design and Applications. IEEE Computer Society, 1984. 

[70] C. Kamath and Ahmed H. Sameh. The Preconditioned Conjugate Gradient Method on a Multi­
processor. Technical Report ANL/MCS-TM-28, Argonne National Laboratories, Mathematics and 
Computer Science Division, 1984. 

[71] M.G.H. Katevenis. Reduced Instruction Set Computer Architectures for VLSI. The MIT Press, 1985. 

[72] D. Kershaw. Solution of Single Tridiagonal Linear Systems and the Vectorization of the ICCG Algo­
rithm on the CRAY-1, pages 85-92. Academic Press, 1982. 

[73] S.C. Knauer, J.H. O'Neill, and A. Huang. Self-routing Switching Network, pages 424-448. Addison­
Wesley, 1985. 

[74] Donald E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Searching. Addison­
Wesley, 1973. 

[75] P.M. Kogge and Harold S. Stone. A parallel algorithm for the efficient solution of a general class of 
recurrence equations. IEEE Trans. Computers, C-22(8):786-792, 1973. 

[76] David J. Kuck. The Structure of Computers and Computations. John Wiley, 1978. 

[77] David J. Kuck. A survey of parallel machine organization and programming. ACM Computing 
Surveys, 9(1):29-59, 1977. 

[78] David J. Kuck, Duncan H. Lawrie, R. Cytron, Ahmed Sameh, and Daniel D. Gajski. The Architecture 
and the Programming of the Cedar System. Technical Report, Laboratory for Advanced Supercom­
puters, Dept. of Computer Science, University of lllinois, August 1983. 

[79] M. Kumar and Daniel S. Hirschberg. An efficient implementation of batcher's bitonic odd-even merge 
algorithm and its application in parallel sorting schemes. IEEE Trans. Computers, C-32(3):254-264, 
1983. 

[80] H.T. Kung and Charles E. Leiserson. Algorithms for VLSI Processor Arrays, pages 271-292. Addison­
Wesley, 1980. 

[81] Snyder 1. Introduction to the configurable highly parallel computer. Computer, 15(1):47-56,1982. 

[82] Duncan H. Lawrie. Access and alignment of data in an array processor. IEEE Trans. on Computers, 
C-24(12):99-109, 1975. 

[83] Duncan H. Lawrie and Ahmed H. Sameh. The computational and communication complexity of a 
parallel banded system solver. ACM TOMS, 10(2):185-195, June 1984. 

[84] Duncan H. Lawrie and C.R. Vora. The prime memory system for array access. IEEE Trans. Computer, 
C-31:1435-442, May 1982. 

[85] F. Tom Leighton. Complexity Issues in VLSI: Optimal Layouts for the Shuffle-Exchange Graph and 
Other Networks. MIT Press, 1983. 



www.manaraa.com

142 

[86J F. Tom Leighton and Charles E. Leiserson. Wafer-scale integration of systolic arrays. IEEE Tmns. 
Comp., C-34(5):448-461, May 1985. 

[87J Charles E. Leiserson. Area-Efficient VLSI Computation. MIT Press, 1982. 

[88J Charles E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing. IEEE 
Trans. Computers, C-34:892-901, October 1985. 

[89] Li.-J. Li and Benjamin W. Wah. The design of optimal systolic arrays. IEEE Tmns. Computers, 
C-34:66-77, 1985. 

[90J Peggy Li and Lennart Johnsson. The tree machine: an evaluation of program loading strategies. 
In 1983 International Conference on Pamllel Processing, pages 202 - 205, IEEE Computer Society, 
August 1983. 

[91J Bjorn Lisper. Description and Synthesis of Systolic Armys. Technical Report TRITA-NA-8318, The 
Royal Institute of Technology, Dept. of Numerical Analysis and Computing Sciences, 1983. 

[92J Boris Lubachevsky and Debasis Mitra. A Chaotic, Asynchronous Algorithm for Computing the Fixed 
Point of a Nonnegative Matrix of Unit Spectml Radius. Technical Report, AT&T Bell Laboratories, 
1984. 

[93J Christoffer Lutz, Steve Rabin, Charles 1. Seitz, and Donald Speck. Design of the mosaic element. In 
Proceedings, Conf. on Advanced research in VLSI, pages 1-10, Artech House, 1984. 

[94J Carver A. Mead and Lynn Conway. Introduction to VLSI Systems. Addison-Wesley, 1980. 

[95J Willard L. Miranker. Hierarchical relaxation. Computing, 23:267-285, 1979. 

[96J Willard 1. Miranker and Andrew Winkler. Spacetime representations of computational structures. 
Computing, 32(2):93-114, 1984. 

[97J Donald 1. Moldovan. On the design of algorithms for vlsi systolic arrays. Proc. IEEE,71(1):113-120, 
1983. 

[98J D. Nassimi and Sartaj Sahni. Bitonic sort on a mesh-connected parallel computer. IEEE Tmns. 
Computers, C-27(1 ):2 - 7, 1979. 

[99J Susan T. O'Donnel, P. Geiger, and Martin H. Schultz. Solving the Poisson Equation on the FPS-
164. Technical Report YALEUjDCSjRR-293, Research Center for Scientific Computing, Dept. of 
Computer Science, Yale University, November 1983. 

[100J M.S. Paterson, W.L. Ruzzo, and Larry Snyder. Bounds on minimax edge length for complete binary 
trees. In Proc. of the 13th Annual Symposium on the Theory of Computing, pages 293-299, ACM, 
1981. 

[101J Gregory F. Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J. Kleinfelder, K.P. McAuliffe, E.A. 
Melton, V.A. Norton, and J. Weiss. The ibm research parallel processor prototype (rp3); introduc­
tion and architecture. In Proceedings of the 1985 International Conference on Parallel Processing, 
pages 764-771, IEEE Computer Society, 1985. 

[102J Franco P. Preparata and J .E. Vuillemin. The cube connected cycles: a versatile network for parallel 
computation. In Proc. Twentieth Annual IEEE Symposium on Foundations of Computer Science, 
pages 140-147, 1979. 

[103J P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations. In Proc. 11th 
Annual Symposium on Computer Architecture, pages 208-214, IEEE Computer Society, 1984. 



www.manaraa.com

143 

[104] L.R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing. Prentice-Hall, 1975. 

[105] Abhiram Ranade. Interconnection networks and parallel memory organization for array processing. 
In 1985 International Conference on Parallel Processing, IEEE Computer Society, 1985. 

[106] Abhiram Ranade and S. Lennart JohnBson. The communication efficiency of meshes, boolean cubes, 
and cube connected cycles for wafer scale integration. In Int. Conf. on Parallel Processing, page, 
IEEE Computer Society, 1987. 

[107] E M. Reingold, J Nievergelt, and N Deo. Combinatorial Algorithms. Prentice Hall, 1977. 

[108] E. Reiter and Gary Rodrigue. An incomplete cholesky factorization by a matrix partitioning algorithm. 
In Elliptic Problem Solvers II, pages 161-174, Academic Press, 1983. 

[109] Arnold L. Rosenberg and Larry Snyder. Bounds on the costs of data encodings. Mathematical Systems 
Theory, 12:9-39, 1978. 

[110] John Van Rosendale. Minimizing inner product dependencies in conjugate gradient iteration. In Proc. 
of the 1983 International Conference on Parallel Processing, pages 44-46, IEEE Computer Society, 
1983. 

[111] YousefSaad. Practical use of Polynomial Preconditioningsfor the Conjugate Gradient Method. Tech­
nical Report YALEU/DCS/RR-282, Dept. of Computer Science, 1983. 

[112] Yousef Saad and Ahmed H. Sameh. Iterative methods for the solution of elliptic differential equations 
on multiprocessors. In Proc. of the CONPAR 81 Conference, pages 395-411, Springer Verlag, 1981. 

[113] Faisal Saied, Ching-Tien Ho, S. Lennart Johnsson, and Martin H. Schultz. Solving schroedinger's 
equation on the intel ipsc by the alternating direction method. In Hypercube Multiprocessors 1987, 
page, SIAM, September 1986. Tech. report YALEU/CSD/RR-502. 

[114] Ahmed H. Sameh. A fast poisson solver for multiprocessors. In Elliptic Problem Solvers II, pages 175-
186, Academic Press, 1984. 

[115] Ahmed H. Sameh. Numerical parallel algorithms - a survey. In High Speed Computer and Algorithm 
Organization, pages 207-228, Academic Press, 1977. 

[116] Ahmed H. Sameh and David J. Kuck. On stable parallel linear system solvers. J. ACM, 25(1):81-91, 
January 1978. 

[117] J.T. Schwartz. Ultracomputers. ACM Trans. on Pro9ramming Languages and Systems, 2:484-521, 
1980. 

[118] Charles L. Seitz. Ensemble architectures for vlsi - a survey and taxonomy. In P. Penfield Jr., editor, 
1982 Conf on Advanced Research in VLSI, pages 130 - 135, Artech House, January 1982. 

[119] Charles L. Seitz. Experiments with vlsi ensemble machines. J. VLSI Comput. Syst., 1(3), 1984. 

[120] M.C. Sejnowski, E.T. Upchurch, R.N. Kapur, D.P.S. Charlu, and G.J. Lipovski. An overview of the 
texas reconfigurable array computer. In Proceedings, National Computer Conference, pages 631-641, 
IEEE,1980. 

[121] M. Sekanina. On an ordering of the set of vertices of a connected graph. Publ. of the Faculty of the 
Sciences of the Univ. of Brno, 4120:137-142, 1960. 

[122] J. Stevens. A Fast Fourier Transform Subroutine for the llliac IV. Technical Report, Center for 
Advanced Computation, Univ. ofIllinois, 1971. 



www.manaraa.com

144 

[123] Harold S. Stone. Parallel processing with the perfect shuffle. IEEE Trans. Computers, C-20:153-161, 
1971. 

[124] Paul N. Swartztrauber. The methods of cyclic reduction, fourier analysis, and the facr algorithm for 
the discrete solution of poisson's equation on a rectangle. SIAM Review, 19:490-501, 1977. 

[125] Clive Temperton. Direct methods for the solution of the discrete poisson equation: some comparisons. 
J. of Computational Physics, 31:1-20, 1979. 

[126] Clive Temperton. On the facr(l) algorithm for the discrete poisson equation. J. of Computational 
Physics, 34:314-329, 1980. 

[127] C.D. Thompson. Fourier Transforms in VLSL Technical Report UCB/ERL/ M80/51, Electronic 
Research Laboratory, UC Berkeley, 1980. 

[128] C.D. Thompson and H.T. Kung. Sorting on a mesh-connected parallel computer. CACM, 20(4):263-
271,1977. 

[129] Jeffrey D. Ullman. Computational Aspects of VLSL Computer Sciences Press, 1984. 

[130] E. Upfal. Efficient schemes for parallel computation. In A CM Symposium on Principles of Distributed 
Computing, pages 55-59, ACM, 1982. 

[131] Leslie Valiant and G.J. Brebner. Universal schemes for parallel communication. In Proc. of the 13th 
ACM Symposium on the Theory of Computation, pages 263-277, ACM, 1981. 

[132] A.Y. Wu. Embedding of tree networks in hypercubes. Journal of Parallel and Distributed Computing, 
2(3):238-249, 1985. 

[133] W.A. Wulf and C.G. Bell. C.mmp - a multi-mini-processor. In AFIPS 72 F JCC, pages 765-777, 1972. 



www.manaraa.com

PROBLEM DECOMPOSITION 
AND COMMUNICATION TRADEOFFS 

IN A SHARED-MEMORY MULTIPROCESSOR 

Abstract 

Thomas J. LeBlanc 
Computer Science Department 

University of Rochester 
Rochester, New York 14627 

Conceptually, a tightly-coupled, shared-memory multiprocessor, such as the BBN 
Butterfly Parallel Processor, can support a model of computation based on either shared 
memory or message passing. The choice of model affects the decomposition of the 
problem into parallel processes and the resultant granularity of communication. An 
architecture, such as the Butterfly, that supports both models offers the programmer a 
wide range of choices for problem decomposition, each with different performance 
attributes. This paper describes a series of experiments using Gaussian elimination to 
evaluate the tradeoffs between shared memory and message passing, over a range of 
decomposition strategies. Several different implementations are described and their 
performance is compared. We conclude that the performance of an application depends 
not only on the efficiency of the underlying communication, but also on the extent to 
which the underlying model of computation encourages or discourages communication. 

1. Introduction 

Programming a multiprocessor (or any other parallel computer) involves tradeoffs 
between parallelism and communication. In order to achieve the best performance, the 
programmer must maximize parallelism and minimize communication. These goals are 
in conflict since increased parallelism usually implies increased communication. 
Although the intrinsic properties of the application limit the amount of parallelism 
available, communication costs so frequently dominate that the inherent limit to 
parallelism is rarely reached. At one extreme, we can minimize communication by using 
single processor systems, but these systems don't admit parallelism. At the other 
extreme, local-area networks offer a large degree of parallelism, but communication in 
these networks is relatively expensive. In such an environment, the decomposition of a 
problem into processes is determined more by communication requirements than 
intrinsic parallelism. Recently available commercial multiprocessors, such as Sequent's 
Balance 8000 [7] and Alliant's FX Series [1], offer very efficient communication, but 
limit the parallelism to some small constant factor less than 16. One of the few 



www.manaraa.com

146 

commercially available multiprocessors that does not put such a low limit on parallelism 
and yet still provides efficient communication between processors is the BBN Butterfly 

Parallel Processor™. 

The Butterfly hardware architecture supports message passing between processors 
using an FFT network of 4x4 switch elements. The memory architecture, implemented 
by the operating system in conjunction with a micro-coded co-processor, provides the 
illusion of shared memory. Software packages have been developed that support the 
shared· memory illusion and the message·passing model. This paper describes a series of 
experiments designed to explore the tradeoffs between problem decomposition strategies 
and communication costs on a shared·memory multiprocessor such as the Butterfly. 

Both shared· memory and message·passing models have been advocated for parallel 
computation. Shared memory is usually found in tightly-coupled architectures that 
support remote memory operations in hardware or firmware. Efficiency is the primary 
motivation for allowing shared memory at the user level. Every process can retrieve the 
data it requires using hardware primitives; no costly system software need be involved. 
Often, this approach ignores the problem of synchronization, which can dominate the cost 
of remote references. Shared memory is useful in applications that communicate values 
which must be interpreted in the context of an environment (e.g., pointers). Since shared 
memory can be used to store an inherited context for a computation, this model makes it 
practical to consider small.grain decomposition strategies. 

Message passing is typically employed in loosely-coupled systems (e.g., local-area 
networks). Since the performance characteristics and error rates of remote 
communication differ significantly with those of local communication, it is natural to use 
two different primitives for remote and local communication. Shared memory supported 
by hardware is used for local references, while non-local communication uses message 
passing, usually implemented by system software. Message passing has two advantages 
over shared memory. First, an exchange of messages is a more abstract form of 
communication than reading a memory location. Message passing subsumes 
communication, buffering, and synchronization. Second, processes in a message·passing 
system cannot directly affect one another. This object-oriented approach has proven 
quite popular for distributed systems composed of many processes. Errors can be isolated 
by monitoring the stream of messages produced by the various processes. A 
corresponding disadvantage of message passing is that it imposes a value-oriented 
semantics. Processes may only communicate values, which may require the exchange of 
an environment in which to interpret the value (i.e., a pointer value is represented by 
the object to which it points). The inability to inherit a context easily means that the 
message-passing model encourages large-grain decomposition strategies. 

Early work on the Butterfly, the Voice Funnel application in particular, used 
message passing. More recently Butterfly applications, including finite element analysis 
and computer VISIOn algorithms, have assumed the shared-memory model of 
computation. The only programming environment available from BBN on the Butterfly 
that masks the low-level details from the programmer is the Uniform System package, 



www.manaraa.com

147 

which implements a shared-memory model. Programmers find it easier to use the 
Uniform System than to build the program from scratch, regardless of how well the 
application fits the shared-memory model. In order to provide the Butterfly programmer 
with implementation alternatives, we have constructed a library package based on 
message passing, called SMP [4]. 

We conducted a series of experiments, using Gaussian elimination as a sample 
application, to evaluate the tradeoffs inherent in both the hardware and software 
architectures. The goal of the experiments was to explore the tradeoffs between different 
decomposition and communication strategies using the shared-memory model, as 
implemented by the Uniform System package, and a simple message-passing model, as 
implemented by SMP. In this paper, we present the results of these experiments. 

In Section 2 we provide an overview of the Butterfly Parallel Processor hardware 
architecture and software environments. Section 3 describes the sample application we 
chose for the experiments and the decomposition strategies, with related communication 
costs, we studied. In Section 4, we describe several different implementations of the 
sample application using both shared memory and message passing for communication. 
Section 5 compares the performance of the various implementations. Conclusions based 
on our experiences are presented in Section 6. 

2. Butterfly Hardware and Software Overview 

The BBN Butterfly Parallel Processor™ consists of up to 256 processing nodes 
connected by a switching network. Each processor is an 8 MHz MC68000 with 24 bit 
virtual addresses. A 290l-based bit-slice co-processor interprets every memory reference 
issued by the 68000 and is used to communicate with other nodes across the switching 
network. All of the memory in the system resides on individual nodes, but any processor 
can address any memory through the switch. A remote memory reference (read) takes 
about 4 us., roughly 5 times as long as a local reference. 

Each switch node in the switching network is a 4-input, 4-output crossbar switch 
with a bandwidth of 32 megabits/sec. An N processor system uses (N log4 N)/4 switches 

arranged in log4 N columns. A 128-node Butterfly contains 256 switch nodes; the extra 

switch capacity is used to provide an alternate communication path between all 
processors for reliability and improved efficiency. The alternate paths can be enabled or 
disabled by the user, making it possible to indirectly measure the effect of switch 
contention. 

The Butterfly is programmed using the C programming language augmented with 
system calls to Chrysalis, the Butterfly operating system [5J. Chrysalis is a protected 
subroutine library that implements various operations for process management, 
interprocess communication, and memory management. The most common operations 
are implemented by microcode. Chrysalis is too low-level for application programmers, 
however, the primitive operations provided by Chrysalis offer a general framework upon 



www.manaraa.com

148 

which efficient high-level communication protocols and software systems can be built. 
Two such systems are the Uniform System package from BBN [2) and SMP [4), a 
message-passing library implemented at the University of Rochester. 

2.1. The Uniform System 

The Uniform System (US) supports a user-level view of the architecture consisting of 
lightweight tasks and a globally-shared memory. The shared memory is implemented by 
the virtual address space of the Butterfly; the lightweight tasks are implemented by 
manager processes, one on each node. To reduce memory contention (i.e., hot-spots), US 
encourages the scattering of data uniformly throughout the machine. This may even 
include putting data in memory associated with a processor that is not otherwise 
involved in the computation. To reduce process management overhead, only one 
manager process is allocated per node; all tasks that run on a node are executed by that 
node's manager process. Since each task inherits the globally-shared memory upon 
creation, US supports a very small task granularity. 

The US library consists of calls to create a globally-shared memory, spread data 
throughout the shared memory, and create tasks that operate on the shared memory. 
The shared memory is accessible to all US tasks. Pointers to storage within the shared 
memory may be shared between processors. During initialization, US creates the 
manager process for each processor, which is responsible for allocating the processor to a 
series of tasks. Usually, a task is some small procedure to be applied to a subset of the 
shared memory. A task, therefore, can be represented as simply an index, or a range of 
indices, into the shared memory and an operation to be performed on that memory. 
Atomic operations in microcode are used to efficiently allocate tasks to processors. Tasks 
may then use the shared memory for interprocess communication. Busy-wait locks are 
provided for synchronization; other synchronization primitives are also available directly 
from Chrysalis. 

One of the main purposes of US is to hide the details of the architecture. US 
programs can be written independent of the number of processors, since the user is not 
aware of how tasks are allocated to processors. In addition, US supports two classes of 
memory: private memory for each process and the tasks it represents, and globally­
shared memory. However, even though all of the memory in the system resides on 
individual nodes, the distinction between local and remote memory, as defined by the 
architecture, is not applied to the globally-shared memory. This design has important 
ramifications on the communication costs we will consider. 

2.2. SMP 

SMP (Structured Message Passing) views the Butterfly as a fast message-passing 
machine. Although the memory architecture is used to implement message buffers, user 
processes cannot share memory. SMP is similar in flavor and scope to the Uniform 
System. SMP provides Butterfly programmers with a model of parallel programs that 
consists of: (1) process families, whose members are created and destroyed together, (2) 



www.manaraa.com

149 

interprocess communication, within a family, based on asynchronous message passing 
(send/receive) according to a fixed communication topology, and (3) a dynamic hierarchy 
of such process families. SMP process families and hierarchies add structure to the basic 
process model of Chrysalis. The advantages of message passing include increased 
autonomy for processes, increased efficiency by exploiting locality of data, avoidance of 
explicit synchronization for data access, and improved protection between processes. 

The SMP communication primitives are Send and Receive. Communication is 
asynchronous between a sender and receiver. Send may specify multiple destinations, 
providing a form of multicast communication. It is nonblocking in that the sender may 
continue to execute before all destinations receive the message. Receive will block until 
a message from the source arrives. A "wildcard" value is available so that messages 
from any source may be received. Although there are additional library calls to create 
processes, there are no other communication or synchronization primitives in SMP. In 
particular, SMP does not support any form of shared memory. 

SMP processes are implemented by Chrysalis processes. These heavyweight 
processes are expensive to create, but have an efficient context switch mechanism. 
Communication between SMP processes uses a single primitive that subsumes 
communication and synchronization. As a result, communication is more expensive than 
reading a remote memory location. Therefore, SMP encourages the use of a relatively 
small number of >SMP processes consisting of significant computation segments that 
communicate infrequently. As with US, SMP does not distinguish between local and 
remote memory, since only local accesses are allowed. However, the distinction between 
cheap communication (local accesses) and expensive communication (messages) is explicit 
in SMP. 

3. Sample Application: Gaussian Elimination 

We chose Gaussian elimination (without pivoting) as the sample application for our 
experiments. The primary reason for this choice was that several experiments using 
shared memory to implement Gaussian elimination had already been performed at BBN 
Laboratories [3,8). Our experiments were designed for comparison with their results. 
However, we were also interested in Gaussian elimination as a representative of a large 
class of algorithms in finite element analysis. Although it is fairly easy to develop 
parallel variants of Gaussian elimination, the problem does have interesting 
synchronization constraints and several different decomposition strategies are possible. 
Our experiments were designed to explore the decomposition and communication 
tradeoff's in Gaussian elimination; it was not our intention to explore efficient algorithms 
for solving linear systems, such as those found in [6). 

In solving a set of linear equations using Gaussian elimination, the coefficient 
matrix M is diagonalized, producing a modified vector of unknowns, and the unknowns 
are determined using back-substitution. (Since back· substitution is a small percentage 
of the total time required to solve the equations, it is not performed in any of the 



www.manaraa.com

150 

experiments.) To eliminate an entry M[ij}, we replace row M[i} with M[i] - (M(j] * 
M[ij}/Mljj}), where M[j] is known as the pivot row. However, this operation cannot be 
performed until row M(j] has stabilized, i.e., MIj,k} = 0, V k < j. In addition, all 
previous entries in row i must already be eliminated, i.e., M[i,k} = 0, V k < j. These 
two synchronization constraints limit the amount of parallelism that we can expect to 
achieve. 

Floating point arithmetic is required to solve a set of linear equations. 
Unfortunately, our Butterfly does not have floating point hardware. (A hardware 
floating point arithmetic unit for the Butterfly is now available from BBN as a hardware 
upgrade.) All floating point arithmetic is performed by costly subroutines. This makes it 
difficult to analyze the communication costs of an application because the execution time 
is dominated by floating point software. To alleviate this problem, our experiments were 
performed with simulated {loating point arithmetic, using the same approach as that 
used in the earlier experiments [3}. All floating point variables were replaced with 
integer variables, and addition and subtraction was used in place of multiplication and 
division. Such a computation does not give the correct answers, but does accurately 
simulate the performance of the computation on a Butterfly with floating point 
hardware. Each experiment was performed using software floating point to ensure the 
correctness of the results, but all reported performance figures refer to the results of 
experiments using simulated floating point. By using simulated floating point 
arithmetic, we not only can make predictions about the performance of the Butterfly 
with floating point hardware, we also reduce the execution time of the computation and 
thereby increase the significance of communication costs. 

3.1. Decomposition Strategies 

In Gaussian elimination there are several boundaries that can be drawn for process 
decomposition. The problem consists of matrix elements, rows, and columns. The 
synchronization constraints effectively preclude delineating processes using columns 
since the processing of multiple columns within the same row cannot occur in parallel. 
Diagonalization of a single row is a reasonable unit of parallelism, since every row can 
eliminate the first column immediately, and subsequent columns as rows are 
diagonalized. Since the synchronization constraints are expressed in terms of individual 
elements, 'a finer-grain allocation is also possible, wherein each element to be eliminated 
is represented by a process. In addition, realizing that the parallelism of any 
decomposition into processes is limited by the number of processors, a coarse-grain 
decomposition, wherein each processor represents a process, is also possible. 

We will consider three decomposition strategies: small-grain decomposition, where 
each element to be eliminated is a process, medium-grain decomposition, where each row 
to be diagonalized is a process, and large-grain decomposition, where each processor is a 
process and contains a subset of the rows to be diagonalized. If we assume P processors 
and an NxN matrix, then the small-grain decomposition has (N2.Nl/2 processes, the 
medium-grain decomposition has N processes, and the large-grain decomposition has P 



www.manaraa.com

151 

processes. 

3.2. Communication Strategies 

Within a particular decomposition strategy, we would like to minimize the time 
required for communication between processes. The overall cost of communication 
depends on the type and amount of communication. Access to shared memory is 
supported by the architecture and is very efficient, particularly when the granularity of 
communication is large enough to amortize the setup costs. (For the Butterfly, block 
transfers can be used profitably for any transfer larger than 4 bytes.) Message.based 
communication is implemented by software and is significantly more expensive. The 
amount of communication depends for the most part on the amount of state local to a 
process. Small.grain (lightweight) processes require more communication than large· 
grain (heavyweight) processes. In each case, we can reduce the amount of 
communication by transmitting only the nonzero entries in a row. 

In Gaussian elimination, the basic computation step is the elimination of a single 
entry within a row. To perform this operation, both the row containing the entry and 
the pivot row are needed. In the small·grain decomposition, where each element to be 
eliminated is a process, neither row can be statically allocated in the state of a process. 
The pivot row values are not determined until the row is diagonalized and the value of 
the individual entry to be eliminated is not known until all preceding entries in that row 

are eliminated. Therefore, each of (N 2·N)/2 processes must copy two rows into their local 

state to perform their computation. This results in a total of N2·N copy operations. 

In the medium·grain decomposition, each process contains a row to be diagonalized 
as part of its local state. Any changes to the row that occur during the elimination of 
some element are naturally inherited by the operations that eliminate succeeding 
elements. Only the corresponding pivot rows must be copied into the local state. 

Overall, a pivot row must be copied for each of the (N 2.N)/2 elements to be eliminated, 

resulting in (N 2.N)/2 copy operations. 

In the large· grain decomposition, each process contains a set of rows to be 
diagonalized. As with the medium· grain decomposition, each pivot row must be copied 
into the local state, however, a single copy of a pivot row can be used to eliminate an 
entire column of the subset of the problem matrix stored in local state. In addition, any 
local rows that later act as pivot rows do not need to be copied into the local state. 
Therefore, each of N·l pivot rows must be copied into P·l processors, requiring (P·l)(N·l) 
copy operations. 

4. Implementation Descriptions 

All three decomposition granularities were implemented. The small·grain and 
medium·grain decompositions were implemented using the Uniform System and shared 
memory. The large·grain decomposition was implemented using SMP and message 



www.manaraa.com

152 

passing. 

4.1. Uniform System Implementation 

Several experiments had previously been performed at BBN Laboratories [3,81 to see 
how well applications that use the Uniform System, including Gaussian elimination, 
perform on large Butterfly configurations. All of our Uniform System implementations 
are based on adaptations of the program developed at BBN. 

In all US experiments, the problem matrix is uniformly distributed throughout the 
globally-shared memory. In the small-grain decomposition case, a task is created to 
eliminate a single entry in the matrix, M[iJl. Both row M[i] and row MUl are 
transferred to local memory from the globally-shared memory before performing the 
computation, thereby avoiding a remote reference for each individual entry in a row. 
(Block transfers amortize overhead associated with remote references and can 
significantly improve performance.) Since M[il is modified by the operation and must be 
used by other tasks, an additional transfer of the modified row back to the global 

memory location for M[il is also necessary. The total number of copy operations is 3(N2_ 

N)/2. (Note: the initialization step necessary to load the problem matrix into the 
globally-shared memory is not included, either in the analysis of copy operations nor in 
the empirical data.) 

In the medium-grain decomposition, a task is created to eliminate entries in an 
entire row, M[i]. Row M[i] and all rows MliJ, j < i, must be transferred to local memory 
from the globally-shared memory. Since each element to be eliminated requires a pivot 
row to be copied and each row must be copied into the local memory of the task 

associated with that row, the total number of copy operations is (N2_NJ/2 + N. 

4.2. SMP Implementation 

In the SMP implementation of Gaussian elimination, a coordinator process is 
responsible for creating worker processes on different processors. All workers initialize 
the local message handler, which requires global synchronization, and then create a local 
partition of the problem. When N processors are used, each processor P is assigned the 
task of initializing and then diagonalizing all rows R for which R mod N = P. To do so, 
each processor must request each row of the problem matrix in sequence and use it to 
eliminate entries in the corresponding column of the local partition. A percentage of 
these requests, lIP, will be satisfied locally and, therefore, do not require communication. 
Local rows are broadcast to the other processors when they have been diagonalized. 
When all local rows are completely diagonalized, the worker process signals the 
coordinator, which is responsible for termination of the computation. 

The total number of copy operations is P(N-lJ. Each of N-l pivot rows is copied into 
P-l processors. An additional copy operation for each pivot row is necessary to buffer the 
message locally before it is broadcast to the other processors. Since each process 
initializes some subset of the problem matrix in its local memory, there is no need to 
communicate with a global copy of the problem matrix. 



www.manaraa.com

153 

4.3. Caching Strategies 

Interprocess communication costs are not determined solely by the hardware 
organization. Although there is a clear need for communication between different 
processors, there is also a need for communication between different processes. In fact, 
the communication required between software boundaries can dominate communication 
between hardware boundaries, depending on the problem decomposition used. For 
example, in the small-grain decomposition using the Uniform System, fully one third of 
the copy operations are used to move data between the local memory (where it cannot be 

used directly by some other task) and the globally-shared memory. 3N2/2 copy 

operations are required by the US implementation, but only 2N2/2 copy operations are 
required by the decomposition. To reduce the overall amount of communication in an 
application, caching strategies can be used. Such strategies can be particularly effective 
when the data maintained in the cache changes infrequently. 

In Gaussian elimination, once a row has been completely diagonalized, it will stay 
unchanged for the remainder of the computation. One possible strategy to reduce 
communication costs is to cache pivot rows. The large-grain decomposition does this 
naturally, since each pivot row is, in effect, cached on each processor and is used to 
eliminate an entire column in some subset of rows. The medium-grain and small-grain 
decompositions do not have a notion of processor, so much of the communication in these 
cases is required -by the logical structure of the program, not the physical allocation of 
the data. Since US provides process-local data, we can cache the pivot rows on a process 
basis. For the medium-grain decomposition, this reduces the number of copy operations 

from (N2-N)/2 + N copy operations, where we copy the pivot row each time an element is 
eliminated, to P(N-1) + N copy operations, where each pivot row is copied into each 
other processor. Caching the pivot rows in the small-grain decomposition reduces the 

number of copy operations from 3(N2-N)/2 to N2_N + P(N-1). These results are 
summarized in Table 1, which shows the number of copy operations for a problem matrix 
of size 800x800 for each decomposition strategy, including caching. 

In the small-grain and large-grain decompositions, the cache requires little space. 
In the large-grain decomposition, each pivot row is used to eliminate a column in the 
local subset of rows before another pivot row is received. Once a pivot row has been used 
to eliminate a column of entries, there is no need to continue to store that pivot row. 
Therefore, the implicit caching of pivot rows takes little space. The same is true for the 
small-grain decomposition implemented by US. US makes it possible to order the 
allocation of tasks to processors by column, hence in our implementation, tasks that 
eliminate an entry in the first column, using the first row as a pivot, execute before any 
others. Again, the pivot row is used immediately and does not need to be stored any 
longer. This is not true of the medium-grain decomposition as implemented by US. 
Since a row defines the process granularity, a row can be allocated to a processor only 
when some previous row is completed. This sequence of operations requires that we 



www.manaraa.com

154 

COMMUNICATION OPERATIONS REQUIRED BY VARIOUS 
DECOMPOSITION AND CACHING STRATEGIES 

Processors Small Small Grain Medium Medium Grain Large Grain 
Grain (cache) Grain (cache) (cache) 

2 958800 640798 320400 2398 1598 
4 958800 642396 320400 3996 3196 
8 958800 645592 320400 7192 6392 

16 958800 651984 320400 13584 12784 
32 958800 664768 320400 26368 25568 
64 958800 690336 320400 51936 51136 

128 958800 741472 320400 103072 102272 
256 958800 843744 320400 205344 204544 

TABLE 1 

ultimately store all pivot rows in the cache for use by the last row to execute. In effect, 
the caching strategy we have described is rendered impractical by our decomposition 
strategy in this case. 

5. Implementation Performance 

All of the decomposition and caching strategies were implemented, except the 
medium-grain decomposition with caching. (As was stated previously, the cache size 
required for the medium-grain decomposition is prohibitive.) Figure 1 summarizes the 
performance of the various strategies. The performance of the implementations is 
consistent with the data in Table 1. That is, the large-grain decomposition generates the 
least amount of communication and is the most efficient. The caching strategy improves 
the small-grain decomposition by a nontrivial amount, although the shape of both curves 
is the same. The medium-grain decomposition is a further improvement on the small­
grain decomposition. 

It is important to note that the number of communication operations required by a 
decomposition is not the sole factor in performance. The cost of a single communication 
operation varies depending on whether shared memory or message passing is used. The 
shared-memory operations are subsumed in the message-passing operations, which also 
include buffering and synchronization. Each message-passing operation is up to 5 times 
more expensive. For this reason, the disparity in performance is not as great as that 
suggested by Table 1. 

For the problem size chosen, an 800x800 matrix, none of the implementations were 
able to exploit significantly more than 64 processors. Furthermore, the performance of 
the message-passing implementation actually deteriorates as additional processors are 



www.manaraa.com

Seconds 

400 

SGNC 
350 

155 

SGNC (Small Grain, No Cache) 

SGC (Small Grain, Cache) 

MGNC (Medium Grain, No Cache) 

LGC (Large Grain, Cache) 

SGC 

300 

250 

200 

150 

100 

50 I 

I 
OLI ____ -L ____ -LI ____ ~I ____ ~I ____ ~I ____ ~I ____ ~IL_ ____ LI_ 

8 15 24 32 40 48 56 64 

Number of Processors 

Implementation Performance on an 800 x 800 Matrix 

Figure 1 



www.manaraa.com

156 

used. Figure 2 contrasts the performance of the two extremes in implementation, small­
grain tasks using shared-memory communication versus large grain processes 
communicating via messages. With four processors, the message-passing implementation 
is about 30% faster than the shared-memory implementation. The relative performance 
is consistent across different problem sizes and, in each case, the message-passing 
implementation is more efficient. The disparity decreases as additional processors are 
used until the "knee" in the performance curve of the message-passing system is reached. 

The improved performance of the message-passing implementation can be directly 
attributed to data locality (i.e., large-grain decomposition), which reduces the need for 
communication. Nearly every data access in the shared-memory implementation 
requires a remote reference. Even when the data physically resides in local memory, all 
data conceptually resides in shared memory and must be copied into the local workspace. 
Very few remote references are needed in the message-passing implementation (none, if 
only one processor is in use), and a copy takes place only when a remote reference is 
made. Nonetheless, communication via message passing is more expensive than 
communication via shared memory and each additional processor causes additional 
communication. For a fixed N, there exists a point of diminishing returns as P is 
increased. Once we reach the "knee" in the curve (approximately 64 processors), the 
additional communication required as processors are added to the work force is not offset 
by a significant gain in parallelism 

To confirm the hypothesis that communication costs are the reason for the "knee" in 
the curve, the cost of sending a message was artificially varied to see what effect 
communication has on the overall performance of the message-passing implementation. 
The message-passing system was modified to perform 0, 1, 2, and 4 copy operations per 
message. As shown in Figure 3, the performance curve for message passing without a 
copy operation is similar to the curve for the shared-memory implementation. For a 
problem of size 200x200, a plateau is reached at 64 processors and additional processors 
neither help nor hinder. A single copy operation per message creates a "knee" at 26 
processors. The "knee" moves down to 18 processors when two copy operations are made 
per message and falls even farther, to 13 processors, when four copy operations are used. 
This is precisely the effect we see in Figure 1, wherein the message-passing 
implementation reaches a "knee" at 64 processors, and then rapidly deteriorates in 
performance. 

The shared-memory implementation does not exhibit a "knee" in our experiments 
because each additional processor does not significantly add to the communication costs 
of the implementation. In the small-grain decomposition without caching, the amount of 
communication is fixed, so additional processors do not add to the burden. In the small­
grain decomposition with caching, each processor adds only slightly to the amount of 
communication, and unlike in the message-passing implementation, the cost of each 
additional communication operation is small. Any "knee" that might result would only 
appear well beyond the point for which we can gather empirical data. 



www.manaraa.com

Seconds 

400 

350 

300 , , 

157 

250 , , 
200 

150 \ 

100 

50 

\ 

Message­
Passing 

----------
Shared 
Memory 

O~----------~----------~----------~-----------L-
32 64 96 

Number of Processors 

Shared Memory vs. Message-Passing 

Implementation Performance on an 800 x 800 Matrix 

Figure 2 

128 



www.manaraa.com

158 

Seconds 

20 

15 

" 
" 

10 . ' 
. ' 

5 

I 

.. 

" 

" / 

Quadruple block copies 

/ 

/' Double block copies 
/' 

No block copies 

OLI __________ -LI __________ ~I __________ ~I~ __________ LI_ 

32 64 96 128 

Number of Processors 

Message-Passing Communication Costs on a 200 x 200 Matrix 

Figure 3 



www.manaraa.com

159 

As a result, if P is significantly smaller than N, as it should be to achieve high 
processor efficiency, the message-passing implementation will make many fewer copies 
than the shared-memory implementation, although each copy (message) will take longer. 
Fewer copies will reduce both switch and memory contention, and improve performance, 
until the "knee" in the curve is reached. 

5.1. Memory Contention 

In the Uniform System implementations, all memories in the system are used to 
store the problem matrix, even when only a few processors are involved in the 
computation. This has the effect of improving the overall performance by decreasing 
memory contention. Since the message-passing implementation can not take advantage 
of memories in unused processors, it is important to quantify this effect when comparing 
implementations. 

In order to determine the effect extra memories have on the performance of a 
computation, the small-grain decomposition with caching was executed on various 
numbers of processors and memories. The test results show that the extra memories can 
have a substantial impact on performance. On a problem matrix of size 400x400, a 
Butterfly configuration with 4 columns of switches, 16 processors, and 96 memories 
performed 15% better than 16 processors and 16 memories. On a problem matrix of size 
200x200 and a Butterfly configuration with 2 columns of switches, 4 processors and 16 
memories performed 30% better than 4 processors and 4 memories. The greatest effect 
occurs when roughly 114 to 112 of the total number of processors are in use. When a 
larger fraction of processors are performing computation, most of the memory is already 
in use, i.e., there is no other extra memory. When too few processors are used, they are 
insufficient to generate enough load on the memory to make memory contention 
significant. Surprisingly, there was even a very small, but consistent, improvement of 
1-2% in the performance of the single processor case, probably due to the fact that a 
block transfer from remote to local memory is slightly faster than a transfer within local 
memory. As extra memories were used, less data was retrieved from the local memory, 
slightly reducing the execution time. 

5.2. Switch Contention 

The 128-node Butterfly requires a switch configuration capable of supporting 256 
nodes. The excess switch capacity can be used to provide redundant paths through the 
switch, increasing the total amount of potential bandwidth in the switch. Under 
software control, the Butterfly can also be configured to artificially limit the switch 
configuration to the bandwidth of a 64-port switch. We can use the existence of these 
alternative switch configurations to measure indirectly the switch contention in a 
program. That is, if a program does not exhibit significant switch contention, the 
performance of the program will not be seriously affected by the use of the smaller 
switch configuration. 



www.manaraa.com

160 

The small-grain decomposition with caching was executed on a 128-node Butterfly 
using both switch configurations. The results of this experiment show that the effect of 
reduced switch capacity can be dramatic (as a percentage of total execution time) when a 
large number of processors are in use. A 35% improvement in execution speed was 
attained using the larger switch configuration for 94 processors on a problem of size 
400x400; 64 processors achieved a speedup of more than 20% on the same problem using 
the larger configuration. Although these figures are not an exact measure of switch 
contention, they do suggest that the small-grain decomposition is generating traffic 
sufficient to cause significant switch contention. It is not surprising that this 
implementation introduces significant switch contention once the inner loop has been 
tuned to the point where the program is communication intensive. 

The large-grain decomposition exploits the locality of data, thereby minimizing 
switch contention. Unlike the small-grain decomposition, the message-passing 
implementation for Gaussian elimination showed no significant switch contention. A 
problem of -size 800x800 was able to execute on 32 processors at roughly the same speed 
using either switch configuration. Over the entire range of experiments, the effect of 
alternate communication paths improved the execution time of the message-passing 
implementation by at most 3%. 

6. Conclusions 

The intention of our experiments was to analyze the effect that the architecture and 
programming environment of a shared-memory multiprocessor have on problem 
decomposition and communication tradeoffs. Our experiments were designed to provide 
some empirical data that suggests how best to structure communication between 
processes in such an environment. Based on our experiences, we offer the following 
conclusions. 

The particular model of computation in use is less important than how well it is 
matched to the application. Gaussian elimination is not a typical application for loosely­
coupled systems; a multiprocessor is more appropriate. However, this does not mean 
that the shared-memory model is the best approach for this application. Since Gaussian 
elimination is essentially value-oriented (no addresses are communicated and rows are 
not used until they have stabilized), message passing is a better model of the 
communication that takes place. Obviously, there are many other applications for which 
message passing would be inappropriate. Any programming environment that offers a 
single model of communication will not be well-matched to a large class of applications. 

A high-level interface, efficiently implemented, leaves the programmer fewer 
opportunities to introduce inefficiency. Of course this assumes that the high-level 
interface provides a useful abstraction. Communication via shared memory does not 
include synchronization primitives, although US does provide a busy-wait LOCK and 
UNLOCK primitive. Each programmer must use these to implement the appropriate 
synchronization. Spin locks are commonly used, but the resultant program can be 



www.manaraa.com

161 

especially sensitive to the amount of time spent between attempts to set the lock [8]. The 
only process synchronization in the message-passing implementation occurs during 
access to message buffers, which is implemented very efficiently using microcoded atomic 
operations. The user does not need to be concerned with low-level synchronization; it is 
implicit in the message-passing primitives. 

Finally, the performance of an application depends not only on the efficiency of the 
underlying communication, but also on the extent to which the underlying model of 
computation encourages or discourages communication. The Uniform System model does 
not encourage the programmer to exploit locality. Data is assumed to reside in one 
large, globally-shared address space and the boundaries between processors are 
essentially ignored. Thus, in Gaussian elimination, each task must copy rows back and 
forth between local memory and globally-shared memory, independent of the location of 
the task and data. This is not the case with the message-passing model, since all data is 
local to some process in the computation. Locality makes it possible to avoid copying any 
row to be modified (since only local rows are ever modified) and also to avoid copying any 
pivot row that happens to be local. Thus, an implementation based on very efficient 
communication (e.g., shared memory) may perform worse than one based on a less 
efficient mechanism (e.g., message passing), if such efficiency requires or even encourages 
too much communication. 

Acknowledgements 

I am grateful for the efforts of the people who helped perform these experiments. 
Lawrence Crowl and Neal Gafter implemented various versions of the message-passing 
system and provided valuable insights. Thomas Olson performed many of the Uniform 
System experiments. Brian Marsh made several modifications to the Uniform System 
implementation and helped with the analysis. Liud Bukys provided technical assistance. 
I would also like to thank the members of the technical staff at BBN Laboratories for 
their comments and assistance, especially Bob Thomas, who was kind enough to share 
his data and program code. This work was supported by the National Science 
Foundation under grant number DCR-8320136 and by DARPA/ETL under research 
contract DACA 76-85-C-OOOl. 

References 

1. AIliant Computer Systems Corporation, ALLIANT FX/Series, Product Summary 
(Unpublished), June 1985. 

2. BBN Laboratories, The Uniform System Approach To Programming the Butterfly 
Parallel Processor, Version 1, Oct 1985. 



www.manaraa.com

162 

3. W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken and T. Blackadar, 
Performance Measurements on a 128-Node Butterfly Parallel Processor, Proceedings 
of 1985 International Conference on Parallel Processing, August 1985, 531-540. 

4. T. J. LeBlanc, N. M. Gafter and T. Ohkami, SMP: A Message-Based Programming 
Environment for the BBN Butterfly, Butterfly Project Report 8, Computer Science 
Department, University of Rochester, July 1986. 

5. W. Milliken et ai, Chrysalis Programmer's Manual, Version 2.2, BBN Laboratories, 
June 1985. 

6. V. Pan and J. Reif, Efficient Parallel Solution of Linear Systems, Proc. 17th ACM 
Symp. on Theory of Computing, Providence, Rhode Island, May 6-8, 1985. 

7. Sequent Computer Systems Inc., Balance 8000 System, Technical Summary, Dec 
1985. 

8. R. Thomas, Using the Butterfly to Solve Simultaneous Linear Equations, Butterfly 
Working Group Note 4, BBN Laboratories, Mar 1985. 



www.manaraa.com

Domain Decomposition Preconditioners for Elliptic 
Problems in Two and Three Dimensions 

JOSEPH E. P ASCIAK 

Brookhaven National Laboratory 
Upton, N.Y. 11973 

Abstract. In this talk, we shall describe some techniques for developing domain decomposition 
preconditioners for elliptic boundary value problems in two and three dimensions. We consider 
the case where more than two sub domains meet at an interior point of the original domain; 
this allows a subdivision into an arbitrary number of subdomains without the deterioration of 
the iterative convergence rates for the resulting algorithm. We set up a general framework for 
the development of preconditioners by domain decomposition. As examples of the application 
of these techniques, we derive domain decomposition preconditioners for elliptic problems in 
two and three dimensions. 

1. INTRODUCTION 

The need for modeling more complex physical processes has led to the development 
of larger and faster computers. In the next generation of machines, parallel computing 
architectures will be employed to gain additional computational improvement. If significant 
computational improvements are to be realized, then algorithms especially tailored to 
parallel environments must be developed. Moreover, these algorithms should be effective 
on machines with a large number of processors. 

Preconditioners based on domain decomposition gives rise to an important approach for 
the development of parallel algorithms for elliptic boundary value problems. Such algo­
rithms are straightforward to efficiently implement on actual parallel computers. In these 
implementations, a greater number of sub domains gives rise to a greater number of inde­
pendent parallel tasks leading to an effective use of parallel resources. The overall efficiency 
of the resulting algorithm also depends upon the rate of iterative convergence which can 
be estimated in terms of the condition number of the preconditioned system. Accordingly, 
to be effective in a parallel environment, the conditioning of the preconditioned system 
should not deteriorate as the number of subregions (Le. processors) increase. Thus, in 
this talk, I will only consider domain decomposition methods whose conditioning improves 
with the number of subdomains. Other domain decomposition preconditioners have been 
proposed [1,2,3,4,5,6,7,8J. 

In order to keep the notation as simple as possible, we will restrict our attention to the 
following model problem: 

(1.1) 
-Au = f in 0, 

u = 0 on a~. 

This manuscript has been authored under contract number DE-AC02-76CH00016 with the U.S. Depart­
ment of Energy. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or 
reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. 
This work was also supported in part under the National Science Foundation Grant No. DMS84-05352 
and under the Air Force Office of Scientific Research, Contract No. ISSA86-0026. 



www.manaraa.com

164 

Here ~ denotes the Laplace operator and 0 is a polygonal or polyhedral domain in RN 
for N = 2 or 3. Extensions of the methods to more general problems on more general 
domains are possible [5,6J. 

Let HJ (0) denote the set of functions which vanish on ao and are in the Sobolev space 
HI (0) (Le. the functions which together with the first derivatives are square integrable 
on 0). The weak form of (1.1) is then: Find U E HJ(O) such that 

(1.2) D(u,O) = (1,0) for all () E HJ(O), 

where 

D(~,O) == l V'~. V'Odx 

and 

(~,(}) == 10 ~(}dx. 
In the usual finite element approach, we are given a finite dimensional subspace Sh of 

HJ (0). The parameter h is related to the accuracy of the approximation and is roughly the 
mesh size. The Galerkin approximation to u is then the unique function U E Sh satisfying 

(1.3) D(U,w) = (I,w) for all w E Sh. 

We shall be concerned in this talk with the efficient solution of (1.3) using precondi­
tioners based on domain decomposition. The question of defining a preconditioner for 
(1.3) may be approached from two points of view. The first requires the choice of a basis 
for Sh. Employing this basis, one is led to a matrix problem for the computation of the 
corresponding coefficients of U. The preconditioning problem from this point of view is to 
define another matrix which is easier to invert and 'spectrally close' to the original. Alter­
natively, the preconditioning problem can be written as a problem of defining a symmetric 
positive definite quadratic form B(·,·) which is equivalent to D(.,·) on Sh X Sh. At each 
step of the iteration we must solve problems of the form: Given a linear functional G on 
Sh, find W E Sh such that 

(1.4) B(W,w) = G(w) for all w E Sh. 

The problem of finding the solution of (1.4) should be computationally less complex than 
that of finding the solution to (1.3) on the given computer architecture. The corresponding 
spectral condition in terms of forms reduces to inequalities of the form 

(1.5) coB(w,w) ::; D(w,w) ::; clB(w,w) for all w E Sh. 

The condition number of the preconditioned system is bounded by cl/co. In the above 
inequality, Co and Cl are constants which may depend on d (the subdomain size) and h. 

In the remainder of the talk, we shall use generic constants of the form C i to denote 
constants which do not depend on d and h. These constants may take on different values 
in different places. 



www.manaraa.com

165 

2. A GENERAL DOMAIN DECOMPOSITION APPROACH 

In this section, we shall set up a general technique for developing domain decomposition 
preconditioners. In later sections, we shall us this technique to derive domain decomposi­
tion preconditioners for elliptic problems in R2 and R3. 

Although the algorithms and analysis extend to more complicated elements, in the talk 
we shall only consider the simplest approximation subspaces. For the two dimensional 
problem, we consider continuous piecewise linear functions on a 'quasi-uniform' triangula­
tion of size h. In R 3 , we subdivide 0 into rectangular prisms 0 = UTj and define Sh to be 
the set of functions which are continuous on 0 and piecewise tri-linear on the Tj. 

To define domain decomposition algorithms, we naturally must start with a decompo­
sition of 0 into M sub domains, 0 = U:!10i. The hypothesis on these subdomains and 
their relation to the discrete spaces Sh will not be given in full generality. Instead, for 
simplicity of presentation, sub domains in R2 (resp. R 3) should be thought of as triangles 
or rectangles (resp. rectangular prisms). The subregions are to be 'quasi-uniform' of size 
d, i.e. they should be contained in a ball of radius Cod and contain a ball of radius C 1d. 
Furthermore, the boundary of the subdomains should be part of the mesh boundary of 
the subspace Sh. This means that any given mesh triangle or rectangular prism in the 
subspace definition is contained in some n j. 

To define the domain decomposition algorithms, we proceed as follows: Let r = UaOj 
and define 

(2.1) 

We decompose arbitrary functions WE Sh by W = Wp + WH where Wp E S~ and 

(2.2) for all W E sZ. 
WH is the unique function in Sh which equals W on r and satisfies (2.2). Such a function 
will be called 'discrete harmonic.' It is an immediate consequence of (2.2) that 

(2.3) 

A central theme in the derivation of domain decomposition preconditioners is to define 
B(o,.) by replacing the form D(WH, WH) in (2.3). Notice that WH implicitly only depends 
on its values on the nodes on r. Thus, it is reasonable to replace D (W H, W H) with a form 
which explicitly only depends upon the boundary values of W H. A central issue in this 
subject is the appropriate selection of the replacement form. 

We shall derive replacement forms in the following way. We obviously have that 

M 

(2.4) D(WH,WH) = LDi(WH,WH), 
;=1 

where 



www.manaraa.com

166 

We shall define B by replacing the terms of (2.4) on a subdomain by subdomain basis. 
To do this, we first consider the weighted one-norm on the subdomains given by 

(2.5) 

We assume that we are given forms A.(-'.) which are defined on SkiBO; X SkiBO; satisfying 

(2.6) ao(d/h) A.(V, V) ~ 11V1I~.0; ~ al(d/h) A.(V, V), 

for all V E Skloi with V discrete harmonic on 0 •. Here ao(d/h) and al(d/h) are functions 
of d/ h. The form of the weighted norm in (2.6) is quite appropriate. In fact, if one maps the 
subregion to a unit size domain 0 via a linear mapping T(O) = 0, then (2.6) is equivalent 
to 

ao(d/h) A.(V, V) ~ dN-211v112 _ ~ al(d/h) A.(V, V), 
HI (0) 

where V = V 0 T-l. If we set .JAv, V) == Ai (V, V), then the question of defining Ai 
reduces to that of defining an appropriate Ai on the unit size domain. Note that d/h is 
the mesh size for the mapped subspace. Thus, the problem of constructing and analyzing 
the forms A.(-,.) reduces to corresponding problems on unit size domains (independent 
of the subdomain parameter d). We shall give examples of these constructions in later 
sections. 

However, it does not simply suffice to replace the terms Di(WH, WH) with Ai(WH,WH). 
Clearly, D.(-'.) is indefinite since it annihilates constants. Consequently, it should be 
replaced with a form which also annihilates constants. Accordingly, we modify Ai so that 
the new form is zero for constants and thus define 

M 

(2.7) B(W,W) = D(Wp,Wp) + EAi(WH - W1-,WH - W1-), 

where W1- is the constant on O. which satisfies 

(2.8) Ai(WH - W1-, 1) = 0. 

One can easily prove the following theorem. 

THEOREM 1. There are constants Po and PI which do not depend on d or h satisfying 

(2.9) poao(d/h) B(W, W) ~ D(W, W) ~ PIal (d/h) B(W, W), for all W E Sk. 

REMARK 1: It is important, but not necessary, to use (2.7)-(2.8) to properly treat the 
constants. One could use instead, 

M 

(2.10) B(W,W) = D(Wp,Wp) + EAi(WH,WH). 
i=l 

The solution of (1.4), when B is given by (2.10), is somewhat easier to compute than 
when B is given by (2.7). However, in all of the applications to be discussed later, the 
condition number of the preconditioned system using (2.10) is d-2 times larger than the 
corresponding condition number using (2.7). 



www.manaraa.com

167 

3. A TWO DIMENSIONAL APPLICATION 

In this section, we develop a two dimensional domain decomposition preconditioner 
using the techniques of Section 2. Using the analysis given in [5], it can be shown that the 
condition number for the resulting preconditioned system is bounded by C(l + ln2 (d/h)). 
Hence, the method presented here should be competitive with that given in [5]. 

From the discussion in Section 2, it clearly suffices to define the forms Ai (·,·) on the 
reference size domain n. Let us assume that the sub domains are rectangular; the triangular 
case is similar. Thus the reference domain is rectangular. Let Eh denote the image of Sh 
under T, i.e. 

Sh == {V 0 T- 1 1V E Sh}. 

The space Sh clearly consists of a set of functions which are piecewise linear on the image 
of the triangulation defining Sh' The triangulation defining Sh is quasi-uniform of size d/h. 
It is also clear that the image V E Sh of a discrete harmonic function V E Sh is discrete 
harmonic with respect to Sh. For such functions, it is well known (see, for example, [4,5]) 
that 

1_12 11_112 1_1 2 Co V < V < C 1 V . 
Hl/2(ao) - Hl(O) - Hl/2(ao) 

The problem then is define computationally feasible replacements for l'I~1/2(aO)' 
To define the replacement, we will use the discrete operator 1~/2. Let f i be an edge of 

nand 
Sh(fi) == {4>lr, such that 4> E Sh and 4> = 0 at the corners of n}. 

The discrete operator 10 : Sh(f i ) f-+ Sh(f i ) is defined by laO = T} where T} solves 

(3.1) for all w E Sh(fi). 

The operator 10 is symmetric positive definite on Sh(f;) and 1~/2 is defined to be its square 
root. 

We then define the form Ai by 

(3.2) - - - ,,- 2 "( 1/2 - -) Ai(V,v) == L V(Xj) + L 10 V,V r . 
xi corners r, 

Here (', ·)r. denotes the L2 inner product on fi and the second sum is over all edges of n. 
Using The~rem 1 and the techniques of [5], we can prove the following theorem. 

THEOREM 2. Let B be given by (2.7) with Ai defined by 

(3.3) Ai(V, V) = Ai(V, V) 

where Ai (·,·) is given by (3.2). Then there are constants Co and C 1 which are independent 
of d and h and satisfy 

CoD(W, W) ~ B(W, W) ~ C1 (1 + In2(d/h))D(W, W) for all W E Sh. 



www.manaraa.com

168 

REMARK 2: The preconditioner defined by (2.10) and (3.2) was proposed by M. Dryja. 
Using the techniques given in [5], it is possible to show that the condition number for 
the resulting method is bounded by Cd- 2 (1 + ln2 (d/h)). This method may not perform 
well in parallel applications where a large number of sub domains must be used since the 
computational improvement attained from parallelization may be offset by the increased 
number of iterations required for convergence. 

4. THE THREE DIMENSIONAL EXAMPLES 

In this section, we develop two three dimensional domain decomposition preconditioners 
using the techniques of Section 2. The first example was given in more generality in [6] and 
leads to a preconditioned system with condition number bounded by Cd/h. The second 
example is new and gives rise to a preconditioned system with condition number bounded 
by C(1 + ln 2 (d/h)). 

There is another three dimensional domain decomposition method developed by Bram­
ble, Pasciak and Schatz which also gives rise to a condition number growth of C(1 + 
ln 2 (d/h)). That method is similar to the two dimensional scheme described in [5]. We 
shall not discuss it here since it does not fit into the framework of Section 2. 

The first method that we shall consider is the one described in [6]. We define 

(4.1) ..4.i (V , V) == h L V(X3V· 
"jEan 

The sum in (4.1) is taken over all nodes Xj on a~. The following theorem is proved in [6]. 

THEOREM 3. Let B be given by (2.7) with Ai defined by (3.3) and ..4.i (·,·) given by (4.1). 
Then there are constants Co and C I , which are independent of d and h, satisfying 

CoD(W, W) ~ B(W, W) ~ C~d D(W, W) for all W E Sh. 

As in the two dimensional case, to define a 'log squared' method, we must introduce a 
discrete operator 1~/2. Let r i denote a face of the rectangular domain 0 and define 

Sh(r;) == {cfolr, with cfo E Sh and cfo = 0 on the remaining faces of O}. 

The discrete operator 10 : Sh(ri) f--> Sh(ri) is then defined by 100 = TJ where TJ is the 
solution to 

r TJwdx = r 'VO· 'Vwdx 
}p, }r, 

Once again, 1~/2 is defined to be the square root of 10 • 

The boundary of Ii can be partitioned into interiors (in a two dimensional sense) of 
the faces and the edges and corners. We shall consider the set of points on the edges 
and corners to be the 'wire box.' Let Sh(r) denote Sh restricted to a~. We decompose 



www.manaraa.com

169 

functions V E Sh(r) into V = VF + VE where VF vanishes on the wire box and VE is zero 
on the boundary nodes which are interior to the faces. Using this decomposition, we define 

(4.2) 

Here the first sum is over the nodes Xj in the wire box, the second sum is over the faces 
of a~, and (., .)p. denotes the L2 inner product on rio The proof of the following theorem 
will be given in ~ subsequent paper. 

THEOREM 4. Let B be given by (2.7) with Ai defined by (3.3) and Ai (·,·) given by (4.2). 
Then there are constants Co and C I , which are independent of d and h satisfying 

for all W E Sh. 

REMARK 3: In both of the above examples, it is important to subtract out the constants 
on the sub domains as described by (2.7) and (2.8). Indeed, if one used (2.10) with (4.1) 
then the condition number for the preconditioned system would grow like ~. Similarly, 
if one used (2.10) with (4.2), the condition number would grow like Cd- 2 (1 + ln2 (d/h)). 
In both cases, the condition number and hence the number of iterations required for 
convergence would grow with the number of sub domains used. 

5. COMPUTING THE ACTION OF THE INVERSE OF B 

We shall briefly discuss the problem of computing the action of the inverse of the pre­
conditioner in this section. In general, when B is of the form (2.7) (or (2.10)), to solve 
(1.4), we first find Wp , next compute the values of WH on r, and finally extend WH to all 
of o. This process can be also interpreted in terms of block Gaussian elimination. 

We now give the details of this three step algorithm for the solution of (1.4). As already 
mentioned, the problem of finding the solution W to (1.4) reduces to that of computing 
Wp and WHo The first step is to compute Wp. By taking iP E S~ in (2.7), we see that 

(5.1) B(Wp,iP) = G(iP) for all iP E S~. 

Equation (5.1) shows that W p can be determined by solving independent discrete Dirichlet 
problems on the subregions. The second step involves the computation of the values of 
WH on r. These values are determined as the solution of the following problem: 

(5.2) 

Here Sh(r) is Sh restricted to rand 0 denotes any extension of 0 in Sh. The development 
of an algorithm for solving (5.2) is an essential part of the solution process. We shall 
give some indication how (5.2) can be solved; however, a complete description is beyond 
the scope of this talk. The third step is to compute the discrete harmonic extension of 
the boundary values of W H computed in the previous step. This step also reduces to 
independent discrete Diriclet problems on the sub domains which can be solved in parallel 
(see [5,61 for details). 



www.manaraa.com

170 

We next indicate how the boundary values of W H solving (5.2) can be economically 
computed. We first observe that W H on r can be easily computed if the values of wk, i = 
1, ... ,M are known. Indeed, by moving the terms involving Wk to the right hand of (5.2), 
we are left with a problem of the form 

(5.3) 

where F is an appropriate (known) linear functional. If Ai(·,·) is given by (4.1) and (3.3), 
then the solution of (5.3) only involves the inversion of a weighted identity matrix. If 
Ai(·,·) is given by (4.2) and (3.3), then the solution of (5.3) involves the inversion of a 
weighted identity matrix for the nodes on the wire basket and the inversion of the 1;/2 
operator on the faces. A similar observation holds for the two dimensional example. 

Thus, we could efficiently solve (5.2) if we could compute the values of Wk. It is not at 
all obvious that this can be done in an efficient way. However, by an appropriate choice of 
basis, it is possible to derive a sparse, symmetric positive definite system of equations for 
these values. The description of this basis will not be given here. It is fully described in 
[6] for (4.1) and can be easily extended for (4.2) or (3.2). Thus, we propose solving (5.2) 
by first solving the sparse M x M system for the average values wk and then solving (5.3) 
to compute W H on r. 

6. NUMERICAL EXAMPLES 

In this section, we give some numerical examples which indicate that the domain decom­
position preconditioners behave as theoretically predicted. We will only provide numerical 
results for the three dimensional applications of Section 4. 

All of numerical experiments are applied to the standard model problem given by (1.1) 
where 0 is the unit cube. There are many techniques available for solving this problem. 
However, this problem is interesting in that it illustrates many of the convergence properties 
of the proposed preconditioner. 

The first table gives results for the condition number K of the preconditioned system 
as a function h. For this example, the preconditioner is defined using (2.7) with Ai given 
by (3.3) and Ai (·,·) given by (4.1). There were twenty seven sub domains of equal size so 
d = 1/3 remained fixed. We also report n, the number of iterations required to reduce the 
HI error by a factor of .0001 and Po, the average reduction per iteration in that norm. As 
predicted by Theorem 3, the condition number for the preconditioned system grows like 
cd/h. 

h K Po n 

1/6 6.8 .39 11 

1/12 17.4 .55 16 
1/24 38 .64 21 

Table 6.1. Iterative Convergence Results with Preconditioner 
Given by (4.1),(3.3) and (2.7). 

For the next example, we use exactly the same problem and sub domains as the previous. 
However, we consider the preconditioner defined using (2.7) with Ai given by (3.3) and 



www.manaraa.com

171 

Ai(-'·) given by (4.2). Even though the results for h = 1/6 are slightly worst than those 
of Table 6.1, Table 6.2 illustrates the slower asymtotic growth associated with the 'log 
squared' estimate of Theorem 4. Note that Table 6.2 gives better results for smaller h. 

h K Po n 

1/6 11.8 .48 13 
1/12 15 .51 14 
1/24 19 .52 14 

Table 6.2. Iterative Convergence Results with Preconditioner 
Given by (4.2),(3.3) and (2.7). 

ACKNOWLEDGMENTS 

The results reported in this talk represent joint work with James H. Bramble and Alfred 
H. Schatz of Cornell University, Ithaca, N.Y. 

REFERENCES 

P.E. Bj!1lrstad and O.B. Widlund, Solving elliptic problemo on regio ... partitioned into .ubstructure., "Elliptic 
Problem Solvers II," (eds, G. Birkhoff and A. Schoenstadt), Academic Press, New York, 1984, pp. 
245-256. 

2 P.E. Bj!1lrstad and O.B. Widlund, Iterative method. lor the .00ution 01 elliptic problemo on rr:gitJm partitioned 
into .ubstructure., (preprint). 

3 J.H. Bramble, R.E. Ewing, J.E. Pasciak and A.H. Schatz, A preconditioning technique lor the ejficient 
.00ution 01 problemo with local grid refinement, Camp. Meth. Appl. Mech. Eng. (to appear). 

4 J .H. Bramble, J .E. Pasciak and A.H. Schatz, An iterative method lor Bliptic problemo on regions partitioned 
into lubstructure., Math. Camp. 46 (1986), 361-369. 

5 J.H. Bramble, J.E. Pasciak and A.H. Schatz, The co ... truction 01 preconditionerllor elliptic problemo bl/ 
.ubotructureinll, 1, Math. Camp. 47 (1986), 103-134. 

6 J.H. Bramble, J.E. Pasciak and A.H. Schatz, The co ... truction 01 preconditioner.lor elliptic problem. bl/ 
.ubotructurinll, II, Math. Camp. (to appear). 

7 Q. V. Dihn, R. Glowinski and J. Poiriaux, Solving elliptic probIemobl/ domain decomposition method., in 
"Elliptic Problem Solvers II," (eds, G. Birkhoff and A. Schoenstadt), Academic Press " New York, 
1984, pp. 395--426. 

8 G.H. Golub and D. Meyers, The we 01 preconditioning over irregular regions, "Proceedings of the Sixth 
International Conference on Computing Methods in Science and Engineering" (to appear). 



www.manaraa.com

Abstract. 

METHODS FOR AUTOMATED 
PROBLEM MAPPING 

Joel Saltz' 
Research Center for Scientific Computation 

P.O. Box 2158 Yale Station 
Yale University 

New Haven CT 06520 

It is anticipated that in order to make effective use of many future high performance ar­
chitectures, programs will have to exhibit at least a medium grained parallelism. Methods for 
aggregating work represented by a directed acyclic graph are of particular interest for use in con­
junction with techniques now under development for the automated exploitation of parallelism. 

In this paper we present a framework for partitioning very sparse triangular systems of linear 
equations that is designed to produce favorable performance results in a wide variety of parallel 
architectures. Efficient methods for solving these systems are of interest because (1) they provide 
a useful model problem for use in exploring heuristics for the aggregation, mapping and scheduling 
of relatively fine grained computations whose data dependencies are specified by directed acyclic 
graphs and (2) because such efficient methods can find direct application in the development of 
parallel algorithms for scientific computation. 

Simple expressions are presented that describe how to schedule computational work with 
varying degrees of granularity. We use the Encore Multimax as a hardware simulator to investigate 
the performance effects of using the partitioning techniques presented here in shared memory 
architectures with varying relative synchronization costs. 

1 Introduction 

A set of techniques is proposed for producing parameterized mappings of the solution of a very 
sparse triangular system of linear equations onto a range of parallel architectures. The solution 
of very sparse triangular system in which matrices typically have just a few non-zero elements 
per row is a particularly interesting problem to investigate for a variety of reasons . 

• Department of Computer Science, Yale University, New Haven, CT 06520. saltz@yale, Work supported in part 
by the Office of Naval Research under Contract No. NOOOI4-86-K-031O ,NSF grant DCR 8106181 and NASA contract 
NAS 1-18107 



www.manaraa.com

174 

In solutions of very sparse triangular systems, the number of Hoating point operations that can 
be performed at anyone time is typically rather limited, hence in this problem synchronization 
and co=unication overheads playa particularly crucial role in determining the performance that 
can be achieved. The problem thus provides a simple yet challenging context in which to develop 
practical methods for automated problem mapping and work aggregating techniques. Efficient 
methods for solving very sparse triangular systems, easily adapted to a variety of architectures, 
have direct application in allowing allowing the efficient parallelization of Conjugate Gradient 
type algorithms preconditioned with incomplete LU factorizations. In our discussions and exper­
imental investigations, we will focus in particular on sparse triangular systems that are generated 
from incomplete factorizations of matrices arising from discretizations of two dimensional partial 
differential equations. The work presented here is exerpted from the more detailed report [12]. 

Methods for aggregating work represented by a directed acyclic graph are of particular interest 
for use in conjunction with techniques under development for automating the exploitation of 
parallelism. In the context the ongoing Crystal/ACRE [14] parallel progra=ing environment 
development effort, we are developing simple sets of techniques that can be used for the automated 
mapping of a variety of problems onto both very tightly coupled systems as well as onto systems 
that are quite loosely coupled. The study of methods for aggregating the work involved in solving 
very sparse triangular systems provides a tractable model system for the exploration of methods 
for aggregating work represented by various types of directed acyclic graphs arising during the 
compilation and execution of Crystal/ ACRE programs. 

In the Crystal/ ACRE system, a very high level algorithm specification is supplied by the user. 
In this specification, the detailed interactions among processes in space and time are suppressed. 
The Crystal compiler and runtime system are being designed to allow the generation of instruc­
tions to direct an assemblage of co=unicating processes in the efficient execution of the specified 
algorithm. The compiler generates as many logical processes as possible and then the compiler 
or the runtime system combines clusters of logical processes to produce a problem decomposition 
that possesses a degree of granularity that is appropriate for the target machine. 

In scientific applications, one frequently wishes to obtain multiple solutions with the same tri­
angular system. Consequently it can be appropriate to spend a modest amount of time presched ul­
ing the computations. Because of the small number of Hoating point computations required to 
solve each row, it is essential that very little time be spent during the algorithm's execution in 
scheduling row solutions. The approach taken here is to develop a set of methods requiring a set 
of standard preprocessing techniques that will allow this problem to be mapped or scheduled onto 
architectures with widely varying characteristics. The techniques will involve choosing parameters 
that allow one to make a variety of tradeoffs in the schedule or mapping specification. 

We will assign to a single processor all computations pertaining to a row of the matrix. All 
computations pertaining to a given row are performed during a the first phase after the data 
required is known to be available. Note that this implies a potentially fine degree of granularity 
as we have a stated Jnterest in matrices having few non zero elements in a row. The concurrency 
achievable through the use of this algorithm is determined by the dependencies between the rows 
of the triangular matrix. The computation is partitioned into phases and simple expressions are 
presented that describe the scheduling of computational work. This paper will for the most part 
discuss these methods in the context of architectures that support shared memory and consider 
the tradeoffs between synchronization delays and load balance. When appropriate, we will also 
discuss the use and performance of these mappings in environments that support fast preferential 
access to a local memory. The mapping techniques discussed here are currently being implemented 
on a message passing machine, the experimental results will be presented elsewhere. 

In the execution of a fine grained problem on a shared memory machine such as the Encore 
Multimax, primary impediments to the achievement of ideal multiprocessor performance are 



www.manaraa.com

175 

(1) load imbalance, (2) synchronization delays and (3) programming techniques that introduce 
computations not found in a corresponding sequential program intended to coordinate the parallel 
execution of a problem. Our techniques provide techniques that allow one to reduce (1) and (2). 
Since a prescheduled approach is used, it will be shown that it is possible to keep (3) from becoming 
a serious problem. The strategies developed here for dealing with these overheads are to: (A) 
reduce the number of synchronizations required during the solution of the problem, (B) make 
synchronizations less expensive and (C) improve the balance of load in between synchronizations. 
Due to the rather slow computation and the rapid synchronization, the Multimax presents a 
rather benign parallel environment. We will consequently also make use of this machine to 
provide hardware simulations of algorithm performance in architectures with relatively larger 
synchronization times. 

In message passing environments (such as the Intel iPSC), (1) and (3) remain crucial im­
pediments to the achievement of ideal multiprocessor performance. In current message passing 
machines communication startups are quite expensive ([13]); techniques that minimize the num­
ber of such startups are consequently of crucial importance. The techniques discussed here that 
reduce the number of synchronizations clearly also the number of startups required. In message 
passing machines the amount of information communicated also can play an important role in 
the determination of performance. As we shall see from the analysis of a model problem below, 
the specification of the parameters in the parameterized mapping also plays an important role in 
determining the amount of information that must be communicated. 

The problem partitions and work schedules that result from the process described above may 
be viewed as a generalization of the work described by Saad [15]. In that report, a wavefront 
method was proposed for scheduling work involved in forward and backsolves of matrices arising 
from incomplete factorizations of matrices generated by 5 point discretizations of two dimensional 
elliptic partial differential equations. The work described by Saad as well as the results presented 
here assume a row orie:1ted matrix storage scheme. Experimental work has been reported on the 
NYU ultra computer prototype involving the use of a wavefront method, where the work involved 
in solving for rows of sparse triangular linear systems was allocated in a self-scheduled manner 
[6]. 

A related body of literature also exists on the solution of triangular systems that are less sparse 
than the ones described here, these systems are generally obtained from matrix factorizations used 
in direct methods for solving sparse or non-sparse systems of linear equations. In these problems, 
the data dependencies between rows of the triangular matrix preclude the efficient use of methods 
that schedule all work pertaining to a given row at a time when all required data is available. 

George [4] presents algorithms for a column oriented sparse cholesky factorization, along with 
algorithms for column oriented forward and backsolves. These algorithms utilize the notion of 
a pool of tasks whose parallel execution is controlled by a self-scheduling discipline. Heath [7] 
presents algorithms for parallel solution of triangular systems in distributed memory multiproces­
sors; these algorithms utilize a type of adjustable parameter for controlling algorithm granularity 
quite different from the ones discussed here. In the algorithms described in [7], the work required 
to calculate the inner products involved in solving for each row is shared among the processors. In 
very sparse triangular systems considered in this paper, there are very few computations involved 
in solving for a given variable. In these systems, parallelism can be obtained because the data 
dependencies between rows can allow one to solve for many variables simultaneously. 

In section 2 we discuss methods for generating a parameterized problem decomposition that 
allows for considerable flexibility in determining the granularity of parallelism and facilitates 
inexpensive forms of synchronization. This defines a kind of coordinate system that can be used to 
advantage in specifying how the problem is to be solved. We present in section 3, expressions using 
the parameters arising from the decomposition defined in section 2 that allow the specification of 



www.manaraa.com

176 

the decomposition of the triangular system in a way that guarantees that the data dependencies 
in the problem will be respected. The expressions describing the parametrized schedules depend 
on, among other things, the type of synchronization utilized. 

In section 4, through the analysis of a model problem, an analysis is made of the the tradeoffs 
between load imbalance and synchronization costs, as well as the tradeoffs between load imbalance 
and co=unication costs. An inexpensive method for explicitly balancing the load during each a 
phase of computation is described in section 5. In section 6 the results are reported of experimental 
investigations on the Encore Multimax multiprocessor that (1) explore the effect of parametric 
variations of granularity on performance, (2) evaluate the value of explicitly balancing load during 
each computational phase and (3) compare the performance obtained through the use of different 
synchronization techniques. 

2 Problem Partitioning 

2.1 Overview 

The methods of problem partitioning described here have a strong geometrical motivation and 
will consequently first be introduced in a geometrical context. In the simplest form of incomplete 
LU preconditioning, the factors Land U have the same sparsity structure as the lower and upper 
portions of A respectively. A prior knowledge of the sparsity structure will be used to advantage in 
the generation of the following parameterized problem mapping. Note that this prior knowledge 
is not needed when the automated version of the problem mapping is used. This automated 
version of problem mapping will be described in the following section. 

We will assume. that we have a rectangular array of grid points, all points are connected with 
the same stencil. The stencil is assumed to link a given point with it's left, right, upper and lower 
neighbors in the grid. The matrix is formed by using the so called natural ordering in which grid 
points are numbered in a row-wise fashion beginning with the first column of the first row of the 
domain. We assume the same stencil is utilized for all mesh points in the problem. 

The data dependency pattern between unknowns in the lower triangular solution may be best 
understood by referring back to the stencil and the grid utilized in the formulation of the problem 
(151. Let Xi,; be the location of a mesh point in the two dimensional domain, where 1 ::::: i ::::: n 
and 1 ::::: j ::::: n . In the definition of the problem, a function value at a point Xi,; is linearly 
dependent on function values at a given set of surrounding points. When a system involving a 
lower triangular matrix with the same sparsity structure as A is solved, the only interactions that 
need be considered are with variables in the grid that are in rows before i, as well as variables in 
row i that are before column j. 

The grid points in a given row must be solved for sequentially, due to the coupling of each 
point to it's i=ediate neighbors. We assume that the stencil is rather small, so that relatively 
few calculations are involved in obtaining the value for a single grid point of the domain. In 
these mappings, the smallest unit of work that may be assigned to a particular processor consists 
of the computations pertaining to a particular row of grid points. The computations in a given 
row i depend only on results from row j < i. Depending on the relative size and properties of 
the problem and of the machine, better performance may be obtained by using a coarser grained 
assignment of work in which contiguous blocks of several rows are assigned to each of k processors. 
When there are more blocks of rows than there are processors, a wrapped assignment is used in 
which blocks are assigned to processors modulo k. 

Given a fixed assignment of grid points to processors, one may be free to schedule the work 
associated with calculating values at mesh points in a variety of different ways. This processor 
scheduling has a marked effect on the frequency with which processors must interact to exchange 



www.manaraa.com

177 

D • • • • • • • • • 
Processor 2 

• • • • • • • • • • • • 

D w· • • • • • 
Processor 1 

• • • • • • • • • • • • 

m m m • • • 
Procesor 2 

• • • • • • • • • • • • 

DDD • • • • • • • • • m Processor 1 
• • • 

Figure 1: Two processors, five point stencil, block size = 2, window = 3. Numbers designate 
computational phases. 

information. When a five point stencil is utilized, a convenient method of scheduling is to partition 
each block into windows of w columns each. Because of the use of the five point stencil, values 
for all points in a given window of a block may be computed before any work on the next window 
is begun. IT one numbers the windows in each block from left to right, block i may commence 
work on window j when block i-I has finished work on window j. This leads to a pattern 
of computation [15) in which a wavefront of computation is seen to propagate from the lower 
left portion of the domain (Figure 1). The block size and the size chosen for the window both 
determine the coarseness of the computation's granularity. In [15) is found a quantitative analysis 
of this tradeoff in the case where the block size is equal to the window size and the grid is square. 
This analysis is extended both through analytically and experimentally in the following in order 
to explore the effects of independently varying block and window size in a rectangular grid. 

For a grid whose points are connected by an arbitrary stencil, the definition of work schedules 
that maintain data dependency relations yet allow for varying degrees of granularity is somewhat 
more subtle. Work is begun in the first row of the first block, and in this row the values for a 
window of w grid points are calculated. Following this, values are found for all mesh points in 
tfie block for which data dependencies allow calculation. The computation proceeds after this in 
stages, with the computations that may proceed in a block at a given time being determined by 
dataflow considerations. If one wishes to aggregate points in blocks into larger units, with each 
unit to be calculated sequentially, the partitioning will take on a zig-zag form. Figure 2 depicts 
the pattern of wavefronts that results from partitioning a domain with a nine point stencil into 
blocks of size two, and scheduling computation using a window size of two. 

2.2 Automated Problem Partitioning 

In order to automate problem partitioning and work scheduling, it is essential to be able to 
dispense with as much application dependent information as possible. We have developed and 
tested a method for generating a work partition in problems possessing data dependencies given 
by a directed acyclic graph (DAG). This method bears a strong relationship to methods proposed 
for systolic array generation [1), [10). The order in which variables, described by rows in L, 



www.manaraa.com

178 

• • • • • • • • • • • • 
Processor 2. 

• • • • • • • • • • • • 
Processor 1 

Processor 2 

Processor 1 

Figure 2: Two processors, nine point stencil, block size = 2, window 
computational phases. 

3. Numbers designate 

can be solved may be depicted by a directed acyclic graph D. The evaluation of rows in L are 
represented by the vertices of D, and the data dependencies between the rows by D's edges. The 
dependence of matrix row a on matrix row b is represented by an edge going from vertex b to 
vertex a. A topological sort may be performed which partitions the DAG into wavefronts. A stage 
of this sort is performed by alternately removing all vertices that are not pointed to by edges, and 
then removing all edges that emanated from the removed vertices. All vertices removed during 
a given stage constitute a wavefront; the wavefronts are numbered by consecutive integers. An 
adaptation of a common topological sort algorithm [9] allows the wavefronts of a DAG to be 
calculated efficiently. 

The wavefronts calculated through this process can be utilized directly in implementing a very 
general method for scheduling the row substitutions required for the solution of the equations. 
The row substitutions in any wavefront may be executed simultaneously. A very straightforward 
method for solving the problem is consequently to partition the problem's solution into phases, 
each of which is dedicated to a given wavefront. On shared memory machines, the straightforward 
application of this technique requires a global synchronization between phases. Because in many 
cases there is only a relatively modest amount of computation required for a given phase, the 
relative cost of the global synchronization can be relatively substantial, as will be shown in the 
experimental results below. On many message passing machines, (e.g. the Intel iPSe [13]), the 
communication latency makes this kind of medium grained parallelism particularly prohibitive. 
Similarly, in message passing machines, it is of considerable importance to map problems in a 
way that reduces interprocessor communication requirements. 

For many problems possessing relatively regular patterns of data dependency, one can obtain 
a variety of benefits on both shared memory and message passing machines by carrying the run 
time analysis a step further through partitioning the DAG in a particular way. The points of a 
DAG are partitioned into disjoint sets called strings. A string partition of a problem is generated 
through the following sequence of depth first traversals in DAG D. 

We define a start vertex of D as a vertex not pointed to by any edge. The vertices making up a 
string S are chosen in the following way. A start vertex V of D is chosen, all edges emanating from 
V are removed; if a new start vertex V' is created through the removal of edges, V' is included in 
the string. The process is continued to recursively remove as many vertices as possible from D, 
and assign them to S. Note that when, during the creation of string S, the removal of a vertex 



www.manaraa.com

179 

Figure 3: Data Dependencies 

6 7 8 9 10 11 

J 5 6 7 8 9 

1 2 4 5 6 7 

3 4 5 

1 2 J 

Figure 4: Wavefronts 

exposes multiple start vertices, only one of these start vertices are included in S. As vertices V' 
are assigned to S, we mark the vertices W remaining in D that had edges arising from V'. New 
strings are begun using available start vertices. In choosing vertices to incorporate in all strings 
after the first, preference is given to vertices previously marked by other strings. 

Strings have the following properties: (1) The points in each string are connected, (2) There 
is no more than one point belonging to a given wavefront in a string, (3) The graph describing 
the inter-string dependencies is a directed acyclic graph. The DAG describing the inter-string 
dependencies will be called the string DAG. 

Figure 3 depicts a DAG which could be obtained from a zero fill incomplete factorization of a 
matrix arising from the discretization of an elliptic partial differential equation using a nine point 
star template. Figure 4 depicts the wavefronts in the computation, and figure 5 depicts a string 
decomposition and illustrates the string DAG corresponding to this problem. 

I . 
I . 

. I 
t 

I . . I 
t 

~--. :] 

Figure 5: Strings and String DAG 



www.manaraa.com

180 

. 
22 23 24 25 26 27 . 
16 17 18 19 20 21 . . 
10 11 12 13 14 15 . 

7 8 9 

4 5 6 

1 2 3 

Figure 6: Mesh Point Ordering 

It should be noted that it may be possible to partition a DAG into strings in several different 
ways. For example, the triangular system arising from the zero fill factorization of the matrix 
generated by a rectangular grid with a 9 point template can be partitioned in two ways. In one 
partitioning, matrix rows originating from horizontal strips of domain form strings, in the other 
matrix rows originating from diagonal strips of domain form strings. Performance implications 
of these different methods of decomposition are discussed in the presentation of experimental 
timings in [i2J. 

When a DAG originates from the incomplete decomposition of a two dimensional domain, 
it is possible to make sure that the strings are chosen in a much more controlled manner. The 
decomposition can be determined by the way in which the mesh points are ordered in the formation 
of the matrix. It is simple to arrange for the algorithm to give preference to lower numbered rows 
when forming new strings from start vertices D, and to attempt to incorporate rows into a growing 
string in order of increasing row number. For example, figure 6 depicts a simple way of numbering 
the grid points from figures 3 and 4 to ensure the production of the string decomposition depicted 
in 5. 

In a rough sense, the strings of a DAG D are sets of points orthogonal to the wavefronts of 
D. This type of decomposition allows for considerable flexibility in determining the granularity of 
parallelism, as discussed below. The decomposition of the DAG D into strings will be shown below 
to facilitate particularly inexpensive forms of synchronization in shared memory architectures. 

The data dependency relationships in the problems discussed in this paper are quite regular 
and are easily handled by the mechanism described above and in fact could be handled by methods 
described in [lJ if the data dependencies were given in a symbolic fashion. 

2.3 Mapping Strings onto Processors 

The string DAG may be distributed among processors in a variety of ways. On message passing 
machines, mapping large contiguous sections of the string DAG onto each processor will tend to 
minimize communication costs, but will also tend to lead to poor load distributions. Scattering 
or wrapping strings that are contiguous in the DAG may lead to a much better load distribution 
at the price of increased communication costs. 

The work associated with each cluster of strings may be scheduled with varying degrees of 
granularity. The string DAG defines a partial ordering among the strings. The starting strings 
may be defined as the strings that precede all others in this partial ordering. Computations of 
rows in these strings are not dependent on information from any other strings in the string DAG. 

The partial ordering of the data dependencies between the strings allows for the straightfor­
ward implementation of dataflow synchronization methods. The granularity of parallelism may 
be determined by fixing the amount of work starting strings can perform before communicating 



www.manaraa.com

181 

their data to other strings in the string DAG. Simple relationships involving the wavefronts of 
rows allows the calculation of which rows may be solved for by a processor assigned to a cluster 
of strings. 

3 Construction of Work Schedules 

3.1 Overview 

The parallelism involved in solving a sparse triangular system of equations is inherently rather 
fine grained; the work required to compute the value of a variable corresponding to a given row 
generally amounts to only a few floating point operations. In scientific applications, one frequently 
wishes to obtain multiple solutions with either the same triangular system or triangular systems 
with the same non zero structure. In these cases, it seems to be appropriate to spend a modest 
amount of time to calculate a work schedule. It is essential, however, that very little time be 
required to schedule row executions during the execution of the algorithm. We consequently 
have chosen to use a prescheduled approach in which the rows to be computed by a string at a 
given phase in a computation are chosen implicitly by determining the wavefronts that should be 
computed during that phase. 

We will now consider methods for scheduling the execution of work given a string DAG. We 
will assume that the strings making up the string DAG have been linearly ordered and that 
contiguous blocks of b strings are demarcated, and are assigned to consecutive processors in a 
wrapped manner. 

For barrier and dataflow synchronization methods, we will present expressions denoting the 
largest wavefront, that the strings in a block must compute during a particular phase. The 
expressions presented here are derived in [1-2]. Obviously computations cannot be undertaken 
until the required data is available. The calculation of the wavefronts that are to be computed 
during each phase takes into account the data that is guaranteed to be available when a processor 
reaches a given phase. 

The phase during which one can assure data availability for a given computation depends 
on (1) the synchronization mechanism used, (2) the data dependency relationships between the 
strings of the string DAG and (3) the data dependencies between the blocks into which the string 
DAG is partitioned. 

We will now discuss scheduling when barrier synchronization methods are employed; these 
methods assure that all processors have finished phase p - 1 before any processor is allowed to 
begin phase p. 

The proposition below presents expressions that give the maximum wavefront number that 
is to be computed by a given block i during phase p, under the assumption that the first block 
computes exactly w wavefronts per phase; i.e. during phase p the first block computes wavefronts 
w(p-1) + 1 to wp. 

This proposition may be regarded as a method of parametrically describing the wavefronts of 
a coarse grained DAG, each vertex of which represents the solution of a number of rows (note: 
this coarse grained DAG is not the string DAG). A wavefront of this coarse grained DAG will 
be called a block wavefront. It should be noted that one may assign any work scheduled during 
a phase to any processor one desires. In problems described by irregular DAGs it will be shown 
below that explicitly balancing the processor load in a block wavefront during each phase can be 
quite advantageous. 

Proposition 1 Assume that strings making up the string DA G have been linearly ordered, that 
contiguous blocks of strings are demarcated, and that these blocks are assigned to consecutive 



www.manaraa.com

182 

processors in a wrapped manner. Let W; represent the largest wavefront that can be scheduled 
during phase p by block i under the following conditions: (1) the first block advances w wavefronts 
per phase, i.e. Wi = wp, and (2) all required data is computed before the system reaches phase p. 

W; is given by the expression W; = max(p, w(p - i + 1) + i - 1). 

When it is known that data dependencies occur only between adjacent strings, a more aggres­
sive scheduling policy can be used. 

Proposition 2 Assume that strings making up the string DAG have been linearly ordered so 
that data dependencies occur only between adjacent strings, that contiguous blocks of strings are 
demarcated, and that these blocks are assigned to consecutive processors in a wrapped manner. 
Let W; represent the largest wavefront that can be scheduled during phase p by block i under the 
following conditions: (1) the first block advances w wavefronts per phase, i. e. Wi = wp + b - 1, 
and (2) all required data is computed before the system reaches phase p. W; is given by the expression 

W~ = { 
w(p - i + 1) + ib - 1 If P <:: i 
~ ifO~p<i. 

When dataflow synchronization is used, at any given time, processors may be performing 
computations specified by different phases. To ensure that needed data is available when a 
processor performs its computations during a phase, we must construct a schedule that makes 
adequate allowance for the weak interprocessor synchronization. The calculation of the wavefronts 
that are to be computed during each phase takes into account the data that is guaranteed to be 
available when a pfbcessor reaches a given phase. The schedule to be presented below also takes 
into account the data dependencies between blocks of strings in the string DAG. 

To illustrate the role of inter-block data dependencies in determining schedules for performing 
work when dataflow synchronization is used, consider an important special case that arises when 
inter-block data dependencies are restricted to nearest neighbors, i.e. block i + 1 requires data 
only from block i. In this case the constraints for scheduling wavefront execution during a 
given phase p are identical for dataflow and barrier synchronization mechanisms. In either of 
these synchronization mechanisms, a processor P beginning phase p + 1 has to know that its 
predecessor has finished phase p. Block i assigned to P requires data only from block i-I so 
that no provision need be made for the possibility that blocks upon which i depends have not yet 
computed values for wavefronts corresponding to phase p. 

When dataflow synchronization is employed, proposition 3 below presents expressions that 
give the maximum wavefront number that is to be computed by a given block i during phase 
p, under the assumption that (1) the first block computes exactly w wavefronts per phase, and 
(2) block i can require data only from blocks j, max(i - d, 1) ~ J < i. Note that when d = 1 
we have the previously discussed case of nearest neighbor data dependencies. The string DAGs 
that arise from many problems obtained from incomplete factorizations of matrices arising from 
partial differential equations are frequently characterized by small values of d. 

The expression is obtained by mapping a chain of logical processes in a wrapped manner 
onto the P processors of the machine. For the sake of tractability, the expressions are derived 
under the assumption that the logical processes assigned to a given processor are assumed to be 
independent of one another. In the actual system, all processes assigned to the same processor 
must complete a given phase before beginning the next. Creating schedules using the assumption 
that processes asSIgned to a processor are independent assures us that computations will not be 
undertaken until the required data are available, since such a schedule allows for the possibility 
that all processes on a given processor could be computing the same phase at a given time. When 



www.manaraa.com

183 

d < P, the expressions derived yield the largest wavefront that could be scheduled by a given 
block at a particular time, when d :::>: P this is no longer necessarily the case. 

Proposition 3 Assume that strings making up the string VA G have been linearly ordered, that 
contiguous blocks of strings are demarcated, and that these blocks are assigned to consecutive 
processors in a wrapped manner. Assume that each block constitutes a process that executes its 
computations in phases subject to the constraint that at any time, if block i has finished phase p, 
block i + 1 can complete all phases with numbers less than or equal to p + 1. Furthermore assume 
that each block i requires data only from blocks max(i - d, 1) through i-I. 

Let W; represent the largest wavefront that can be scheduled during phase p by block i under 
the following conditions: (1) the first block advances w wavefronts per phase, i.e. W;' = wp, and 
(2) all required data is computed before the system reaches phase p. 

For i :::>: 2, W; is given by the expression 

W; = max(f p/dl,w(p - i + 1) + r(i - 1)/dll (1) 

4 Load Balance - Synchronization Cost Tradeoffs 

4.1 Analysis of a Model Problem 

For a given problem, the tradeoffs between load imbalance and synchronization costs will vary 
with choice of window and block size. We will examine this tradeoff in the context of solving 
a lower triangular system generated by the zero fill factorization of the matrix arising from a 
rectangular mesh with a five point template. We will utilize P processors and partition the 
domain into n hori;ontal strips where each strip is divided into m blocks, as is depicted in figure 
1. We will assume that the problem is obtained from a domain with N by M mesh points, and 
that all computations required to solve the problem would require time S on a single processor. 
We will also assume that computation of each block takes time TB = S/(mn); this ignores the 
relatively minor disparities caused by the matrix rows represented by points on the lower and the 
left boundary of the domain. Horizontal strips of blocks are assigned to each of P processors in a 
wrapped manner. The computation is divided into phases; during phase p the processor assigned 
to strip i computes block p - i + 1 in the strip, as long as 1 ::::: p - i + 1 ::::: n. 

A brief inspection of figure 1 makes it clear that n + m - 1 phases required to complete 
the computation. Define MCU) as the maximum number of blocks computed by any processor 
during phase j. The computation time required to complete phase j is equal to TBMC(j), the 
computation time required to complete the problem is consequently 

n+m-l 

L TBMCU)· 
i=1 

We now proceed to calculate MCU). During phase j, a total of j blocks must be computed 
when 1 ::::: j < min(m, n). Since the blocks are assigned in a wrapped manner, 

MCU) = r ~l. 
When min(m,n) ::::: j ::::: n + m - min(m,n), a total of min(m,n) blocks must be completed 

during phase j. Due to the wrapped assignment of blocks to processors, 



www.manaraa.com

184 

Finally when n + m - min(m, n) < j ~ n + m - 1, a total of n + m - j blocks must be computed 
during phase j so 

MC(j) = rn+m-jj. 
P 

The computation time required to complete the problem is consequently 

n+m-l 

TB L MC(j) = 

S min(m,n)-1 . . ( ) 

mn ( t; r~l + (n +m - 2min(m,n) + l)[mm ;,n 1 + 

n+m-l n + m - j 
L r P 1) 

j=m+n-min(m,n)+l 

In a shared memory environment we must synchronize between phases. Assume that each syn­
chronization has cost Ts. The total time spent synchronizing is then given simply by Ts(n+m-l). 
Assume the problem is mapped to a message passing machine so that processors assigned con­
secutive strips of blocks directly communicate and where links between processors can operate in 
parallel. The cost of sending a B word message between two processors can be approximated as 
a + f3B. We will make the further approximation concerning the cost of requiring each processor 
to send a message to its neighbor following phase j. That cost is equal to the time required 
to communicate the largest message sent between two processors following phase j. The max­
imum amount of information that must be sent from one processor to another after phase j is 
(M/n)MC(j). The cost of communications that follow phase j may be expressed as 

a + 13 M MC(j). 
n 

The total cost of communications is hence given by 

M 
a(n + m -1) + 13-;; 

(
n+m-l j min(m n) t; rp1+(n+m-2min(m,n)+I)[ p' 1+ 

n+m-l n + m - j ) 

;=m+n-~(m,n)+1 r P 1 
Using the above considerations, we will now calculate a simple expression for the amount of 

work forgone during a computation when the number of blocks in a strip n as well as the number 
of strips in a problem m are both integer multiples of the number of processors P utilized. We 
thus assume that n = rIP and m = r2P, for r1> r2 positive integers. From the discussion above, 
during the first min(m, n) - 1 phases, the computation requires time 

min(m,n)-l . 

TB L r~l. 
j=1 

During phase j ~ min(m, n) - 1 when j is not a multiple of P, there are P - j mod P processors 
idle; when j is a multiple of P, no processors are idle. Thus the sum of the processor idle time 
for j ~ min(m,n) -1 is TB min(rl,r2) 2:r=I(I-l), or 

T min(r1> r2)P(P - 1) 
B 2 . 



www.manaraa.com

185 

Through identical arguments, the sum of the processor idle time for the last min(m, n) -1 phases 
is the same as that above. During the intermediate phases the load is balanced with mint m, n) 
blocks assigned to each processor. 

In a shared memory environment, using the above expressions for the processor time wasted 
due to load imbalance and the time spent in synchronization we find that the total processor time 
wasted from both causes may be given by: 

8P(P - 1) min(r" r2) T P( P P) 
r,r2P2 + s r, + r2 

Note that the above expression is symmetric with respect to r, and r2' When the synchro­
nization cost is the dominant overhead, it consequently does not matter whether one uses small 
windows and assigns large blocks of variables to each processor, or whether one uses large win­
dows and assigns small blocks of variables to each processor. Assume without loss of generality 
that r2 :::: r" i.e. that the window size is at least as large as the number of rows of grid points in 
a block. In this case the total processor time wasted is 

(2) 

For any fixed r, reducing r2 to 1 decreases the time spent by processors in synchronization without 
impacting adversely on the balance of computational load. Thus when the number of blocks in a 
strip n as well as the number of strips in a problem m are both integer multiples of the number 
of processors P utilized, the window size can be profitably increased to M / P. This increase in 
window size does not affect the distribution of load and reduces the number of phases required 
to solve a problem~ 

5 Wavefront Longest Processing Time Scheduling 

Propositions (1) and (2) describe a parametric method of constructing work schedules for per­
forming the calculations required to solve the problem in question, when a form of barrier synchro­
nization is used between phases. As stated previously, these propositions may also be regarded as 
a way of parametrically describing the wavefronts of a coarse grained DAG, each vertex of which 
represents the solution of a number of rows. It is consequently natural to consider balancing the 
processor load for the block wavefronts of this DAG, i.e. balancing the load during each phase 
of computation. We choose to utilize a prescheduled approach for allocating work although it is 
also possible to allocate work represented in these wavefronts in a self scheduled manner. 

The scheduling of independent tasks to obtain a minimum finishing time is known to be NP­
hard. There exist a variety of methods for obtaining approximate solutions to this problem [5], 
[8]. One method that has been extensively studied is the Longest Processing Time or the LPT 
schedule. An LPT schedule is one that is the result of an algorithm which, whenever a processor 
becomes free, assigns to that processor a task which requires a run time longer than that of any 
task not yet assigned. 

While the relative difference in performance between results obtained with LPT and optimal 
schedules in the worst case is 1/3 - 1/(3P) where P is as usual the number of processors [5] , in 
simulations investigating the error that might be expected given a variety of randomly generated 
datasets, it was found that the difference between the generated solution and the optimal solution 
was only a few percent [2]. Because the prescheduled work assignment must use approximate work 
estimates based on calculations involving the number of floating point operations required to solve 
for a row of the triangular system, a heuristic such as LPT is likely to perform as well as a more 
expensive scheme to find a closer approximation to the optimal schedule. 



www.manaraa.com

186 

The LPT rule requires time r log r to schedule the execution of r tasks. For a fixed choice of 
window wand block size b in the work schedule, the amount of computation in a wavefront of a 
triangular solve arising from a zero fill incomplete factorization of a matrix generated by a regular 
n by n mesh increases with order n. In an asymptotic sense then, even the rather inexpensive LPT 
scheduling algorithm has somewhat unfavorable properties. The performance obtained through 
the use of the LPT scheduling algorithm is compared with that obtained through the use of a 
wrapped assignment of strings in the following section. 

6 Experimental Results 

6.1 Preliminaries 

The figures discussed in the current section depict the results of measurements made of the amount 
of time required to perform a forward substitution utilizing the three forms of synchronization 
discussed above. The matrix utilized was generated through the zero fill incomplete factorization 
of square meshes of various sizes, in which one of a number of templates were employed. 

Before discussing the experimental results in detail, the architecture of the Encore Multimax 
will be briefly described. The Encore Multimax is a bus based shared memory machine that 
utilizes 10 MHz NS32032 processors and NS32081 floating point coprocessors. Processors, shared 
memory, and i/o interfaces communicate using a 12.5 MHz bus with separate 64 bit data paths 
and 32 bit address paths. 

Associated with each pair of processors is a 32K-byte cache of fast static RAM. Memory data 
is stored in this cache whenever either of the two processors associated with the cache reads or 
writes to main memory locations. Each cache is kept current with the relevant changes in main 
memory by continuous monitoring of traffic on the bus [3]. 

All tests reported were performed on a configuration with 16 processors and 16 Mbytes memory 
at times when the only active processes were due to the author and to the operating system. On 
the Encore the user has no direct control over processor allocation. Tests were performed by 
spawning a fixed number of processes and keeping the processes in existence for the length of 
each computation. This programming methodology is further described in [11]. The processes 
spawned are scheduled by the operating system, and for this otherwise empty system, throughout 
the following discussions we make the tacit assumption that there is a processor available at all 
times to execute each process. In order to reduce the effect of system overhead on our timings, 
tests were performed using no more than 14 processes; this left two processors available to handle 
the intermittent resource demands presented by processes generated by the operating system. 

It should be noted that the bus connecting processors to memory does not appear to to 
cause significant performance degradation in problems with the mix of computations and memory 
references that characterize the problems described here. In a set of experiments using a variety of 
sparse lower triangular matrices, multiple identical sequential forward solves were run on separate 
processors at the same time. Timings of this experiment exhibited performance degradations of 
less than one percent as one increased the number of processors utilized from one to 14. 

6.2 Effect of Window and Block Size on Performance 

The effect of window size on execution time was investigated. The data depicted in figure 7 
was obtltined through a forward solve of the zero fill factorization of a matrix generated using a 
100 by 100 point square mesh, in which a 5 point template was employed. Barriers were used 
for synchronization. Note that this matrix is extremely sparse, there are no more than two 
non-zero off diagonal elements in any matrix row. This matrix, along with the others described 



www.manaraa.com

~ 
! 

187 

~TIME AS FU CTI0N 0F ~IND0~ SIZE: 5 P0I T STE elL 

.' , , , 
qOO 

----- .. -- -
, . 

300 ""'--"'.> ",.~ 

.----.,.-- ......... ....... ----. " ./ 

200 .' '\ .. , Symbolically 
'--' . -.. .... -. ...... 

---./ ...... / elUlm.Jted opt imal 

t 
Optimal tlme 

100 

°O~--~--~---L--~q--~~--6~--~--~---L--~I'O 

WINll0l' SIZE 

Figure 7: Effect of Window Size on Execution Time. Matrix from a 100 by 100 mesh, 5 point 
template. 10 processors used, timings for 25 consecutive trials averaged. 

here, has unit diagonal elements. The forward solve consequently does not involve divisions. 
The parallelism encountered here is consequently quite fine grained. The strings in this problem 
partition the domain into horizontal slices as was described in the analysis of the model problem 
previously discussetl. Horizontally oriented strings were used in all experimental results reported 
here; a discussion of performance effects of string orientation may be found in [12]. Ten processors 
were used to solve this problem, and a block size of one was employed. 

A symbolic estimate was made of the optimal speedup that could be obtained in the absence 
of synchronization delays, given the assignment of work to processors characterizing a particular 
window and block size. For each window size, the time required for a separate sequential code 
to solve the problem was divided by the estimated optimal speedup. This yields the amount of 
time that would be required to solve the problem in the absence of any sources of inefficiency 
other than load imbalance. The results of these calculations are plotted in figure 7 where they 
are denoted as the symbolically estimated optimal computation time. 

Dividing the execution time of the one processor version of the parallel code by the estimated 
optimal speedup yields a further refined estimate of the shortest amount of time in which the 
problem could be solved in the absence of synchronization delays. In figure 7 these results are 
plotted and are denoted as the adjusted symbolically estimated optimal computation time. It is of 
interest to note that, as predicted by equation (2), the two estimates of the optimal computation 
time predict close to identical computation times for windows of size one, two, five and ten. The 
computation times estimated for windows of other sizes are larger. 

Timings were obtained by solving the problem using ten processors on the Multimax, tim­
ings were averaged over 25 consecutive runs. Barrier synchronization between phases was utilized. 
When timed separately, this synchronization was found to require 75 microseconds; this compares 
to approximately 20 microseconds required for a single precision floating point multiply and add. 
It is not clear that future architectures utilizing much faster processors and more general inter­
connection networks will allow for synchronization costs that are as small relative to the costs of 
floating point computation. In a separate set of measurements also depicted in figure 7, the effects 
of varying window size in an environment characterized by higher relative synchronization costs 
WPTP p'VnlnTP~ t,hnl,"h t,ho l1C"A nf bin 7.r; mirrn!:.4=lrnnrl h~rril=lrr hot.WPQn nh~co:pc:: nf t.hp r.nmnl1bdinn. 



www.manaraa.com

188 

10 

block she - 2 

\ ". I" .~ 

/~<: 
/~ : 

/ if\. 
,; : 1J1MOW • 2 

11'\ ' 
'IoII1ndow • bloc1C. she 

Figure 8: Symbolically estimated optimal speedup versus phases required to solve problem on 12 
processors. "Matrix from a 75 by 75 point mesh, 9 point template. 

Finally, the time required to solve the the problem using the sequential code was divided by 
the number of processors used; figure 7 this is depicted, and is denoted there as optimal time. 

Tradeoffs between load imbalance and synchronization costs were examined in a different 
manner by comparing the symbolically estimated optimal speedup against the number of phases 
required to complete a problem. The symbolically estimated optimal speedup takes into account 
the degree to which a given assignment of work to processors balances the workload. The number 
of phases required to solve a problem has a strong bearing on the synchronization overhead 
encountered in solving a problem. 

In figure 8 the symbolically estimated optimal speedup was compared with the phases required 
for solving a lower triangular system generated by zero fill factorization of a matrix arising from a 
75 by 75 point mesh, utilizing a nine point template. The strings chosen were those partitioning 
the domain into horizontal strips. 

The estimated speedups resulting from the use of blocks of sizes one and two, with the size of 
windows varying from one to eight are depicted, along with the speedups resulting from the use 
of windows of sizes one and two, with the size of blocks varying from one to eight. Also depicted 
are speedups resulting from using a block size that is equal to the window size; both are varied 
from one to six. 

The tradeoff between speedup and number of phases used, appears to be generally more 
advantageous when large windows and small block sizes are used than when the situation is 
reversed. As was observed in the examination of the performance obtained using the five point 
template, the number of phases declines with increasing window and or block size, while the load 
balance exhibits substantial fluctuations. The tradeoff between load imbalance and number of 
phases required appears to be much smoother when the size of the window used is set equal to 
the size of the block than in the other cases discussed above; the estimated speedup is in this 
case a decreasing function of the block and window size used. For any given number of phases, 
the load balance when window size is equal to block size is superior to that obtained when the 
window size is set equal to one or two and the block size is varied. 

As synchronization costs increase, it becomes more advantageous to reduce the number of 



www.manaraa.com

;:: 

189 

soo r-B:::A,R:.:..:Rc:.1 E:::R.:,-:.Tc:.1 Mc::E;-..:.V.:..:. 5:;.'---'.T.:..:l M.:;.E:....:.T0::..,.:C:.::0:..:MPc.;L;.:E:.:.T:::E-rP:.:.R:.::0:::BL:;.:E:.:.H~ 

window· 1, bloCK .he • 

window -- 1, block she. " 

---
300 

w1ndo\l tl 2, blolC'k lize • 2 

200 

100 

°O~--~--~---L--~1--~L---6~--~--~8~--L---~IO 

T1Pt-ES I!F IlAIlRIER TI"E 

Figure 9: Effect of window, block size on execution time. Matrix from a 75 by 75 point mesh, 9 
point template. 12 processors used, timings for 25 consecutive trials averaged. 

phases required to solve a problem even at the cost of increased load imbalances. 
The relative performance of four combinations of window and block size in the face of increas­

ing synchronization costs are depicted in figure 9. The execution time required to solve the lower 
triangular system tlescribed above was measured when the following combinations of window and 
block size were employed: (1) window size = 1, block size = 1, (2) window size = 4, block size = 
1, (3) window size = 1, block size = 4 and (4) window size = 2 , block size = 2. Between phases, 
we employed from one to ten 75 microsecond barrier synchronizations. 

The numbers of phases and the symbolically estimated optimal speedup for each of these cases 
are listed below. 

block size window phases est. speedup 
1 1 223 9.43 
1 4 112 7.26 
4 1 167 6.84 
2 2 112 8.14 

As one can observe from the above table, block size four, window one and block size one, 
window four in this problem require at least as many phases as does block size two, window two 
and the later achieves a superior load balance. The use of block size one, window one allows one 
to achieve a load balance that is even better, but at the cost of added phases of computation. In 
figure 9, for barrier times between 75 and 150 microseconds, the shortest run times were obtained 
using block size and window size both equal to one. When barriers were utilized that required 
more than 150 microseconds the use of block and window sizes both equal to two lead to the 
shortest run times. 

6.3 Comparison Between LPT and Wrapped Scheduling 

When barrier synchronization is utilized, the work required to compute the blocks during a phase 
can be scheduled in an explicit manner. We have discussed how one might use an inexpensive 
heuristic such as LPT to do this scheduling. Experimental comparisons wiJI now be made between 



www.manaraa.com

190 

EFF I C I ENcr 0F TW0 WAVEFR0NT EXECUTl0N SCHEMES 
1.0 I 

o.e -

E(Hclc:mc), of LPT scheduling 

j 
", 

\ 
E;(Uc:1enc.), of wrapped 8c.heduUng 

0.2 

O.OO~~---L---L--~--S~~---L---L--~--'~O~-L--~ 

511 STRIPS W!TH 2S P11IN! TEI1PLF\TE 

Figure 10: Efficiency of wrapped VB LPT scheduling. From Multimax times. Matrix from 100 
by 40 mesh, bottom strips have 25 point template, rest have 5 point template. 12 processors, 
block,window equal 1, timings for 25 trials averaged. 

the performance that can be achieved through the use of LPT and that obtained by assigning the 
workload to the processors in a wrapped fashion. 

The difference-in performance between these scheduling methods is only expected to be no­
ticeable in problems with some degree of irregularity. If during each phase a number of blocks 
with identical computational requirements had to be executed, a wrapped assignment should lead 
to an optimal balance of load during that phase. Note that this does not mean that the load will 
be balanced, since the number of blocks assigned to processors can differ by one. 

Of course, the computational requirements of blocks to be computed during a phase are 
not identical, even in problems derived from rectangular meshes in which a uniform template was 
utilized. In such problems, the blocks derived from mesh points near the boundaries of the domain 
will generally require smaller amounts of computation than those derived from points further away 
from the boundaries. Two sets of experiments were performed to compare LPT and wrapped 
scheduling using a matrix generated from a 80 by 80 point mesh with a 5 point template and a 
matrix generated from the same mesh using a 13 point template. Block and window size were 
varied and 10 processors were used. The performance obtained using the two scheduling methods 
were compared using both symbolically estimated optimal speedups and measured runtimes on 
the Encore Multimax. The symbolically estimated optimal speedups were not effected by the 
scheduling mechanism used, and the Multimax runtimes measured showed minimal differences in 
no consistent direction. 

A set of problems exhibiting more dramatic load imbalances were examined. A lower triangular 
system was produced by the incomplete factorization of a matrix generated from a 100 by 40 mesh 
point matrix in which the bottom s strips had a 25 point template, and the 40 - s upper strips 
had a 5 point template. Both the block size and the window size were set equal to one and a single 
barrier was used for synchronization. Figure 10 depicts the efficiency with which 12 processors 
of the Multimax solves the system as s is varied from 0 to 12. Efficiency is defined here as the 
ratio of the time required to solve the problem using a separate sequential code on one processor 
to the product of the measured time to solve the problem and the number of processors used. 



www.manaraa.com

400 I-

3001-

;: 
200 f-

100 

191 

BRRRIER Vs OATAFL0~ SYNCHR0NIZATI0N 

Sequential tl~ -
1365.18 ~ 

--- --. 

Barriar Synehl'ont.:!.atlon , Setup ti_ 

-

-

l 
: =-:,:::-:-. - - i· --~ - ~ --~ --":-04f:aHow -S-yiicKron1uf1or . Setup tl.e 

5 10 15 
PRIlCE55~"5 

Figure 11: Run time of wrapped and LPT scheduling. Matrix from 100 by 40 mesh, bottom 5 
strips have 25 point template, other strips have 5 point template. 12 processors, block, window 
equal 1. Timings for 25 trials averaged. 

The efficiency obtained through the use of LPT scheduling does not vary much with 8, remain­
ing approximately 0.50. The efficiency exhibited by the wrapped scheduling decreases to a low of 
0.36 for 8 equal to 3"but is comparable to the efficiency obtained through the use of LPT when 
s is close to either 0 or 12. The reasons for this appear to be quite straightforward. When one 
has, during each phase, a number of very time consuming blocks that is small compared to the 
number of processors used, one risks a serious load imbalance when a wrapped assignment strat­
egy is used. As the number of time consuming blocks encountered during each phase increases to 
approach the number of processors, the amount of wasted processor capacity decreases. 

Further insight into the situation is provided by figure 11, in which the problem described 
above is solved when 8 = 5 for varying numbers of processors. In this figure we display the 
symbolically estimated optimal computation times (abbreviated as SEOC in the figure) obtained 
from both the wrapped and the LPT schedules, along with the measured Multimax execution 
times. As in previous figures, the optimal time is defined as the sequential time divided by the 
number of processors. The time required for both synchronization and for executing the program 
control structure was also measured by making program measurements with the floating point 
calculations commented out. 

Insight into the sources of inefficiency in this problem may be obtained by examining this 
figure. There is a substantial difference between the optimal time and both symbolically estimated 
optimal computation times, suggesting that load imbalance makes a significant contribution to 
the departure from the optimal run time observed here. This conclusion is reinforced by observing 
the measured synchronization and setup time. 

It may be noted in this figure that the symbolically estimated optimal computation time 
calculated for the wrapped assignment added to the synchronization and setup time produce 
numbers that are quite close to the measured multimax time for wrapped scheduling. This 
correspondence has been noted in the case of the wrapped assignment in a variety of other 
problems not presented here and gives confidence in the accuracy of the measurements. When 
LPT scheduling is used, the symbolically estimated optimal computation time appears have less 
predictive value, this may be seen from fil!ure 11, and has been noted in other measurements. 



www.manaraa.com

9ECUTl0 

roo 

~ 
~ 

100 

\ '. 
\ 

192 

,.''-." 

' ........ ,. 

Hultla.ax tllM: 
W7POd sch duHng 

Wnpped. SOOC 
, .j. 

Hulri::~ ~ .. 
time l'PT ac:hedullng 

"--1' ---
LP'T SEOC 

1 -
Optimal tl.e 

Synchr-oniucion, set.up time 

~~-------------------

PROCESS2RS 

Figure 12: Execution time of barrier and dataflow synchronization. Matrix from 75 by 75 mesh, 
9 point template. Window, block equal 1. Timings from 25 consecutive trials averaged. 

For instance, while the efficiencies obtained through using LPT in figure 10 vary little with s, 
the symbolically estimated optimal computation times vary with s to a substantial extent. For 
instance for 8 equal to 2, the measured time taken to solve the problem using the LPT algorithm 
was 112.16, while lhe SEoe was 69.4; for s equal to 3, the measured time was 118.3 but the 
SEOe was 99.31. The difference in synchronization time between the two cases was, however, 
quite minimal. 

It should be remembered however, that the LPT scheduling method uses symbolically esti­
mated computation times to perform its load balancing. SEoe estimates are clearly not com­
pletely accurate. IT one measures the SEoe obtained, after rescheduling computations using a 
method that produces a near optimal processor schedule based on operation counts, one will tend 
to obtain overly optimistic estimates of the execution time. This observation points to the obvious 
importance of accurate run time estimates when performing LPT scheduling. 

6.4 A Comparison between Barrier and Dataflow Synchronization 

While barrier synchronization is relatively inexpensive on the Encore Multimax, nearest neighbor 
synchronization is less expensive still as it can be implemented in a way that requires, each proces­
sor, only one shared variable increment followed by a busy wait. Figure 12 depicts a comparison 
between execution times measured when a barrier was utilized and execution time measured when 
dataflow synchronization was employed. Both barrier and dataflow synchronization - setup time 
are also measured and depicted. The problem solved here originates from a 75 by 75 point mesh 
with a 9 point template, the window and block size are 1. It is evident from this figure that 
dataflow synchronization is less expensive than barrier synchronization. 

7 Conclusion 

We have carried out an investigation into methods appropriate for the aggregation, mapping 
and scheduling of relatively fine grained computations specified by a directed acyclic graph. The 



www.manaraa.com

193 

solution of very sparse triangular linear systems provides a useful model problem for use in 
exploring these heuristics. A method for using the triangular matrix to generate a parameterized 
assignment of work to processors was described along with simple expressions that describe how 
to schedule computational work with varying degrees of granularity. These expressions are of 
considerable practical importance because they allow one to easily determine what computations 
need to be performed during a given phase to ensure that all required data are computed before 
they are required. The tradeoffs between load imbalance and synchronization costs as a function of 
block and window size were examined in the context of a model problem and it was demonstrated 
that increases in the granularity of parallelism can, in some circumstances, be obtained without 
any increase in load imbalances. 

Experimental timings on an Encore Multimax shared memory multiprocessor confirmed the 
above observation in the case of the model problem and went on to explore the effects of block size 
and window size on multiprocessor performance in a wider variety of settings. The ratio between 
the costs of synchronizing and the costs of performing computations on the current Multimax 
is low enough that rather fine grained parallelism can be profitably used. Examination of load 
imbalance / synchronization cost tradeoffs in architectures requiring coarser grained parallelism 
was performed by experimentally varying the cost of synchronization. 

As was to be expected from the model problem analysis, there is often not a particularly 
smooth tradeoff between between load imbalance and computational granularity. Studies of this 
tradeoff obtained through comparing operation counts and number of computational phases re­
quired to solve a problem suggest that the load balance granularity tradeoff becomes smoother 
when window size and block size are roughly equal. 

The Longest Processing Time scheduling heuristic was used to explicitly schedule the work 
performed during each phase. The performance obtained through the use of this method was 
compared to the time required for assigning blocks to processors in a wrapped manner. LPT 
scheduling was found in some cases to decrease the run time in problems with irregular work 
demands during a typical phase; it had no measurable effect in very uniform problems. Through 
the use of symbolically estimated optimal computation times obtained through operation counts, 
along with direct measurements of synchronization times; for both LPT and wrapped scheduling, 
the origins of the measured run times were traced. 

An experiment was conducted comparing the execution costs incurred through the use of 
barrier and dataflow synchronizations on the Multimax. Despite the use of a rather efficient 
barrier, time was clearly saved though the use of the even less expensive dataflow synchronization 
method. Dataflow synchronization has, however, a number of drawbacks. When non local data 
dependences occur between blocks, we see from proposition 3 that the number of phases required 
to complete a problem increases. Furthermore it does not appear that one can easily make use 
of methods for balancing the load between phases when dataflow synchronization is employed. 

To sum up, in this paper we present a framework for partitioning very sparse triangular 
systems of linear equations that appears to be flexible enough to produce favorable performance 
results in a wide variety of parallel architectures. In this paper we have used the Multimax as 
a hardware simulator to investigate the performance effects of using the partitioning techniques 
presented here in shared memory architectures with varying relative synchronization costs. 

A few co=ents are in order on which of these techniques we can recommended for use on 
the current Multimax. On the Encore Multimax; due to it's low ratio of synchronization costs to 
costs of floating point operations, there does not appear to be an advantage in aggregating work 
to increase the computational granularity. Balancing load within each phase of computation does 
appear to be advantageous in this architecture, although further practical experience is required 
to discover when the overhead required for this extra stage of scheduling is worthwhile. The use 
of dataflow synchronization on the Multimax also appears to be advantageous although it's use 



www.manaraa.com

194 

precludes that of wavefront LPT balancing. One can limit the problem decomposition process 
to the identification of wavefronts if one has no need to increase granularity through the use of 
windows or to use strings to implement dataflow synchronization. Hence, on the Encore there 
should be no reason to pay both the overhead for string decomposition and for LPT balancing. 

8 Acknowledgements 

I wish to thank Stan Eisenstat for making available an inexpensive barrier he has developed on 
the Multimax and to thank Stan Eisentat, Dave Nicol and Martin Schultz for useful discussions. 



www.manaraa.com

195 

References 

[1] M. C. Chen. A design methodology for synthesizing parallel algorithms and architectures. 
Journal of Parallel and Distributed Computing, 116-121, 1986. 

[2] E. Coffman, M. Garey, and D. Johnson. An application of bin packing to multiprocessor 
scheduling. SIAM Computing, 7(1):1-17, 1978. 

[3] Multimax Technical Survey. Technical Report 726-01759 Rev A, Encore Computer Corpo­
ration, 1986. 

[4] A. George, M.T. Heath, J. Liu, and E. Ng. Solution of Sparse Positive Definite Systems on 
a Shared-Memory Multiprocessor. Technical Report ORNL/TM-10260, Oak Ridge National 
Laboratory, January 1987. 

[5] R. Graham. Bounds on multiprocessor timing anomalies. SIAM Jr. on Appl. Math, 
17(2):416-429, 1969. 

[6] A. Greenbaum. Solving Sparse Triangular Linear Systems Using Fortran with Paralllel Ex­
tensions on the NYU Ultra computer Prototype. Report 99, NYU Uitracomputer Note, April 
1986. 

[7] M. T. Heath and C. H. Romine. Parallel Solution of Triangular Systems on Distributed Mem­
ory Multiprocessors. Technical Report ORNL/TM-10384, Oak Ridge National Laboratory, 
March 1987. 

[8] E. Horowitz ana S. Sahni. Fundamentals of Computer Algorithms. Computer Science Press, 
Rockville Maryland, 1978. 

[9] E. Horowitz and S. Sahni. Fundamentals of Data Structures. Computer Science Press, 
Rockville Maryland, 1983. 

[10] Delosme J-M and lise Ipsen. An illustration of a methodology for the construction of efficient 
systolic architecture in vlsi. In Proceedings of the Second International Symposium on VLSI 
Technology, Systems, and Applications, pages 268-273, May 1985. 

[11] J. F. Jordan, M. S. Benten, and N. S. Arenstorf. Force User's Manual. Department of 
Electrical and Computer Engineering 80309-0425, University of Colorado, October 1986. 

[12] J. Saltz. Automated Problem Scheduling and Reduction of Communication Delay Effects; 
submitted for publication. Report 87-22, ICASE, May 1987. 

[13] J.H. Saltz, V. K. Naik, and D.M. Nicol. Reduction of the effects of the communication delays 
in scientific algorithms on message passing mimd architectures. SIAM J. Sci. Stat. Comput, 
8(1):s118, 1987. 

[14] Joel Saltz and M.C. Chen. Automated problem mapping: the crystal runtime system. In 
The Proceedings of the Hypercube Microprocessors Conf., Knoxville, TN, September 1986. 

[15] M. Schultz Y. Saad. Parallel Implementations of Preconditioned Conjugate Gradient Meth­
ods. Department of Computer Science YALEU /DCS/TR-425, Yale University, October 1985. 



www.manaraa.com

BLOCK ALGORITHMS FOR PARALLEL MACHINES 

O. Introduction 

Robert Schreiber 
Computer Science Department 
Rensselaer Polytechnic Institute 

Troy, New York 12180-3590 

In this paper we discuss block methods in matrix computation and the role they are beginning 
to play on parallel computers. 

Block algorithms are advantageous for at least two important reasons. First, they work with 
blocks of data having b2 elements, performing O(b3 ) operations. The Orb) ratio of work to storage 
means that processing elements with an Orb) ratio of computing speed to input/output bandwidth 
can be tolerated. Second, these algorithms are usually rich in matrix multiplication. This is an 
advantage because nearly every modern parallel machine is good at matrix multiplication. In 
fact, by attaching a systolic array to a general purpose machine, it is now easy to provide matrix 
multiply as a fast hardware primitive. The FPS 164-MAX is an example of a machine with this 
sort of capability. 

Systolic arrays provide another important motivation. Future scientific machines may be 
equipped with systolic devices for several matrix operations - the LU, QR, and Schur decom­
positions, for example. There will, however, be limits, imposed by the size of the systolic array, 
on the order of the matrix that such a systolic functional unit can handle. A block algorithm is 
often just the thing for solving a matrix problem that is too big to fit on the given array. 

In this regard, the situation is similar to that on the CRAY and other vector computers, 
which may only perform vector operations on short vectors held in vector registers. An obvious 
block vector algorithm (know as "strip mining") is needed to operate on longer vectors. 

We distinguish in this paper between partitioned and block algorithms. A partitioned algo­
rithm is one in which the operations of a scalar algorithms are reordered and grouped into matrix 
operations. If, for example, we multiply matrices A and B with the program 

for j f-- 1 to n 
for P f-- 1 to n 

for i;- 1 to n 
Cij f- aipbpj . 

we are using a point algorithm - the middle product method. Note that for every column of C, 
all of A is touched. Now suppose that n = bk. We may reorganize the code (or partition the 
algorithm) to obtain 

for PI ;- 1 to k 
for j f-- 1 to n 

for P ;- (PI - l)b + 1 to PI b 
for i ~ 1 to n 

e'i f-- ai"bpi 



www.manaraa.com

198 

in which compuation of C has been broken into k passes, in anyone of which only one block 
column of A and one block row of B need to be held in fast storage. 

If bn words is to large a quantum of data, we may partition the i-loop as well. This leads to 
a program with five loops that requires only b2 + O(b) words of fast storage. 

Dongarra and Sorensen have recently very clearly demonstrated that partitioning is a very 
useful technique for adapting standard matrix computation software to achieve high performance 
on a variety of parallel and vector machines [5]. 

Block algorithms, on the other hand, deal with matrices as arrays of smaller matrices. The 
scalar operations (add, multiply, divide) of a point algorithm become their matrix analogs (matrix­
add, matrix-multiply, matrix-inverse). Thus, for example, a block matrix algorithm requires 6 
nested loops! 

1. Solving Linear Systems 

Consider the system 

Ay = b. (1 ) 

where A E Rnxn. Let A, y, and b have the block structure 

A= y= 
Yl] Y2 
. , 

Yk 

b= t2) 

where Aij E R bxb , and kb = n. If such a factorization of n is not convenient, choose m = kb > n 
and extend (1) to 

1.1 Block L U Factorization 

Compute a factorization A = LU where 

I 

] U= 

Here is the algorithm: 

Algorithm BLU: Overwrite A with its block LU factorization. 

for p <- 1 to k 

This stores 

App <- Ai; 
for i <- p + 1 to k 

Aip <-- AipApp 

for J <-- p + 1 to k 
Aij <-- Aij - AipApj. 



www.manaraa.com

199 

In A. To solve eq. (I), we use block forward-solve: 

Algorithm BFS: [L-1b overwrites bl 

followed by block back-solve: 

for p <-- 1 to k - 1 

for i <-- p + I to k 
bi <-- b, - A,pbp 

Algorithm BBS: U-1b overwrites b in 

for p ;- k to 1 step -1 
bp ;- Appbp 
for i <-- 1 to p - 1 

bi ;- bi - A,pbp 

Unfortunately, this algorithm may fail even though A is nonsingular. It may happen that a pivot 
block App is singular or nearly so. If A is diagonally dominant, however, it does not fail. In 
general, if every leading principle block submatrix of A is nonsingular, it does not fail. 

Note that k inversions of b x b blocks are required, and that ~k3 + O(k2) matrix products 
are used. Thus, the ratio of operations done in the form of matrix multiply to those done as as 
matrix inverse is ~k2; hence a machine whose general purpose speed is at least b times as fast 
as its matrix multiply speed will be balanced for this algorithm. 

To best allow fast access to the data on machines with interleaved memory, it is advantageous 
to store A in blocked form. In blocked storage, a block of the matrix occupies b2 consecutive 
storage location. 

1.2 Inverses of Pivot Blocks 

Since they are required by Algorithm BLU, we must ask how to provide inverses of b x b blocks. 
There are two reasonable methods. 

1. Use a direct method. 

2. Use an iterative method due to Schulz (right, no "t")[14] that computes the inverse using 
matrix multiplications. 

Direct computation of the inverse of a b x b matrix requires 2b3 operations in general, and b3 

if the matrix is symmetric positive definite. 

1.2.1 The Schulz Method 

The method is 

Xo <-- aoBT 

Xi+l <-- ai+d21 - XiB)Xi 

which costs 4b3 operations per step. The sequence {X,} converges to B+, the pseudo-inverse of 
B. The number of steps required is about log2 IC(B) where IC(B) is the spectral condition number 
of B (the ratio of largest to smallest singlliar values). Since the number of iterations may be 
considerably greater than 1, this method is very expensive. But in some (admittedly unusual) 
circumstances this may be acceptable because matrix multiply can be done so fast. 

Schreiber [12] gives details on computing the ai. It suffices for convergence to take ai = 1 for 
i> 0 and 

2 
ao < (72 

I 



www.manaraa.com

200 

where al is the largest singular value of B. To estimate al, we may take IIBII}, since 

Better choices of "'i, which save about half the iterations, are described in the paper 112]. 

1.3 An Alternative Factorization 

We may also compute a partitioned LU factorization 

A = LU 

where 

o ]; U = [Ull 
Lkk 0 

and where the Lii are unit-lower triangular and the Uii are upper triangular. This is especially 
advantageous if solving a triangular system can be done as fast as matrix multiply. 

The algorithm is: 

for p <- 1 to k 
factor App = LppUpp ; store the factors in App 

for i <- p + 1 to k 
A ip <- AipUp~1 
Api <- Lppl Api 

for i <- p + 1 to k 
for j <- p + 1 to k 

Ai] <- A,] - AipAp] 

This method is attractive since a factorization costs less than an inversion: ~b3 operations (!b3 

if A is symmetric positive definite.) 

If solving triangular systems is not especially easy we would store Lp/ and Up~1 in App. Since 
Lppl is unit-lower triangular, these factors fit in the storage for A pp . 

For the factorization above, the ratio of matrix multiply and triangular solve operations to 
factoring is k2 , which is 3 times better than the ratio achieved by the block LU algorithm. 

1.:.1 Inverting the Triangular Fadors 

We can use a version of the Schulz method due to Pan and Reif lIO] to invert triangular matrices. 

Let the b x b matrix L = I£i]] be lower triangular. Choose Xo = diag (£j,/,£;;i, ... ,l';;/)· 
Define Xi by the method: 

Xi+1 = (21 - X,L) Xi i = 0,1, ... 

and define the residual matrix Ri by 

It is straightforward to show that 

Ri = 1- X,L. 

X,+1 = (I + Ri)Xi 

Ri+1 = R;' 

(3) 

(4) 

(5) 



www.manaraa.com

201 

Moreover, Ro is strictly lower triangular. Therefore, RI = Rc, is zero above the second subdiag­
onal, R2 = R~ is zero above the fourth subdiagonal, and, in general, Rk is zero !ibove the 2kth 
subdiagonal. Thus, if 2k 2" b, Rk is zero and Xk = L -I. For example, if b = 32, R5 = 0 and 
XI = L -I. Moreover, as R, becomes more and more sparse. we can exploit its structure to reduce 
the cost of the method using formulas (4) and (5). 

1.( Blo.ck Algo.rithms fo.r Symmetric Po.sitive Definite Matrices 

Let 

All AIl AIl 

A = A21 

be an n X n symmetric positive definite (SPD) matrix. All of the leading principle submatrices 
of A are also SPD and are at least as well conditi~ned as is A itself, hence the block triangular 
factorizations discussed above exist and can be stably computed. 

We shall assume that A is stored so that only the blocks Aij i 2" j are available. 

If A is SPD then it has a block LDLT factorization, where 

J 
We shall overwrite Aii with D;I and Aij with Lij , i > j. 

Note that to then solve (1), we first solve (LD)y = b; since 

LD = [L~~I 
LklDI 

one may solve for y with the following algorithm: 

fo.r p <- 1 to. k 
yp <- D;;lbp 

o 

fo.r i <- p + 1 to. k 
bi<- bi - LipDpyp 

= bi - Lipbp. 

Here is the factorization code: 

This stores, in A, the blocks: 

fo.r p <- 1 to. k 

ApI' <- A;;; 
fo.r j <- p + 1 to. k 

T +-- AppAfp (= D;;IApJ ) 
for i <- j to. k 

Aij <- Aij - AipT. 

o 



www.manaraa.com

202 

2. L.ast Squares Prohlems 

The problem is minx IIAx - bll. The norm II II is the 2-norm: 1111112 = yT y. A is m x n, m :::: n. 
We assume that rank (A) = n. 

2.1 N orm.l Equations 

We may form and solve the normal equations: AT Ax = ATb. 

Forming ATIA,bl is a matrix multiply. (A and b can be stored in an m x (n + 1) array and 
multiplied by AT. Then the method for SPD systems (Section 1.4) is used. This will succeed 
provided A is well-enough conditioned. 

2.2 QR Fartoriz.tion 

We seek a factorization 

where Q is orthogonal and R upper triangular. Partition 

We then solve Rx = c. 

2.2.1 P.rtitioned Given, QR 

Define 

A= : [

AI! 

Arl 
Ar+1,1 

b = [~l 

m = rb, n = sb 

where Ar+1,j =0 O. Compute Q and R as follows. 

Algorithm PGQR: 
for j +- 1 to S hegin 

set Rr+1,j =0 Ar+1,j 
for i +-- r to j hegin 

(where Rij and Ri+1,j are upper triangular and Qij is a 2b x 2b orthogonal product of plane 
rotations.) Next set 

[ Ai,J+l 
Ai+l,j+l 

t,S f--- Q.. t,)+ A] [ A· 1 
Ai+l,s 'J Ai+1,j+l 

end; 

Note that the update (6) is a matrix multiply. Finally, set 

(6) 

end; 



www.manaraa.com

203 

Note that diag(L) = (2, ... ,2). Qlm 

Note that in both of the partitioned QR algorithms, O( 8~1) of the work is matrix multiply, 
where s is the number of block columns of A. . 

Bischof and Van Loan [lJ have developed a variant of this method that represents the product 
of several Householder transformations in the form I - WY rather than I - V LVT as we have 
done above. 

%.%.: A Block QR Algorithm 

We seek a factorization 

where 

and where each Rij E R bxb , i.e., R is block upper triangular. The other factor Q = Qs ... QI 
where, for example, QI reduces the first block column of A to b x b form: 

and QI is a block reflector: 

QI = I - 2VI vt, VI E R mxb , VtVI = h. 

In general, if 

Rll 

Rj_l,j_1 Rj_l,j Rj-I,s 

(Q)-I ... QdA = 

o 
Ar,j Ar,s 

then Q j is chosen so that 

[ 
A~,) [RJJ 

Q' 0 ): : 

A r ,) 6 
The block reflectors are symmetric, orthogonal matrices that are known, in the special case where 
b = 1, as elementary reflec tors [61. 

Parlett and Schreiber [lll describe the construction of the block reflector Q. The method 
starts by computing P and T such that 



www.manaraa.com

204 

where pT P = Ir and PI E Rrxr. r:S b, and T E Rrxh. A point-QR factorization may be used 
to compute P and T. 

The method continues by computing 

polar decomposition 

where U is orthogonal and M is SPD; 

(I + M) = RTR Cholesky decomposition 

where R is upper triangular; and finally 

v=~[ UR I] 
J v2 -P2R-

We shall discuss next a method for the polar decomposition that is rich in matrix multiply. 

Another method for computing a block-QR decompostion, based on nonsymmetric orthogonal 
matrices of the form I - WyT, with W, Y E R mxb was given by Br¢nlund and Johnsen [4]. 

2.3 Polar Decomposition 

Because of its use in the block-QR algorithm of the previous section, we consider next algorithms 
for the polar decomposition of a matrix. The polar decomposition has a number of uses in addition 
to the one given above [8]. 

Given an invertible matrix B, the factorization B = U M where U is orthogonal and M is 
symmetric non-negative definite is the polar decomposition of B. [If b is a complex number not 
equal to zero, then b = (b/lbl)lbl is its polar decomposition.] Clearly, M is the unique positive 
definite square root of BT B and hence U = BM- I is unique too. 

Higham [7] has given an algorithm of the form 

Xo = f(B), 

Xi +1 = g(Xi,Xi- I ). 

The sequence {Xd converges (globally, and ultimately quadratically) to the orthogonal polar 
factor U. 

Since the Xi converge quadratically, we have 

It follows that liX!~\ - Xi-III = O(T2i). And, since Xoo = U is well-conditioned, no large constant 
is hidden by the 0(')' 

Almost all of the work in Higham's method is in computing X-I at every iteration. We 
propose to use Schulz's method with Xi-=-\ as starting guess. Experiments show that, in a typical 
case, there are five iterations required for Higham's method to converge, and the number of Schulz 
iterations is as follows: 

Schulz 
iteration iterations 

6 

2 5 
3 3 
4 2 
5 

Total 17 

Thus, about 34 matrix products are required to compute the polar decomposition in this way. 



www.manaraa.com

205 

3. Eigenva]uf> Problf>ms for Symmetri(' Matri('es 

For every real n x n symmetric matrix A, there exists a real orthogonal matrix V and real diagonal 
matrix A such that 

This is the eigendecomposition of A. 

We consider a parallel block Jacobi method. It is easy to comprehend the algorithm by 
observing how it works in a simple case. Suppose that A is a block 4 x 4 matrix 

w here each Ai) is 6 x 6. 

Algorithm BJ (Block Jacohi): 

repeat { 

STEP 1: 

All 

A= 
A;z 
AL 
A;4 

A 1z AI3 Al4 
A22 An A24 
43 A33 A34 
Af4 Ar4 A44 

where Pl2 is a product of plane rotations representing one sweep of a cyclic Jacobi method applied 
to a 26 x 26 matrix; i.e., P12 is a product of 6(2b - 1) Jacobi rotations. 

Also 

( A33 
44 

where P34 is generated similarly. 

STEP 2: 

This is matrix multiply. 

STEP 3R: Permute block rows of A as follows: 

A12 Al3 
A42 A43 
A22 A 23 
A32 A33 

STEP 3C: Permute block columns in the same way: 

until convergence. 

Note: In general the permutation scheme is: 

2 3 4 5 6 k - 1 k 



www.manaraa.com

206 

(We assump the block dimension is even.) 

A sweep is one pass over all the off-diagonal blocks. Since, for block k x k matrices there are 
k(k = 1)/2 such blocks, and k/2 are zeroed at each iteration of the loop, k - 1 iterations is one 
sweep. 

Variants of this method that are somewhat more efficient are discussed by Schreiber! 13:. 
Experiments done by Brent and Luk 131 indicate that 6-10 sweeps suffice for convergence. 

A block version of Eberlein's method for the nonsymmetric case was given by Braun and 
Johnsen 121. 

4. Further Work 

Here are some interesting open questions in this area. 

1. Luk and Park have recently proven that a number of parallel cyclic Jacobi methods are 
convergent 191. Can these proofs be extended to the block Jacobi methods of Section 3 above? 

2. Is there any merit to classical block Jacobi methods, in which large off-diagonal blocks are 
used, as proposed by Scott, et. al. [15] 

3. Block reflectors can be used, in a obvious way, to block tridiagonalize a symmetic matrix, or 
to reduce a nonsymmetric matrix to block upper-Hessenberg form. Can these reductions be 
used as the first step in efficient algorithms for the eigenvalue problem? 

4. Are there good block methods for symmetric indefinite linear systems? For Vandermonde (or 
block Vandermonde) systems? 

Atknowledgments 

I thank Dr. Ralph Schmidt for suggesting several of these problems and for our many discus­
sions on this subject. This work was partially supported by the Office of Naval Research under 
contract N00014-86-K-061O and by Saxpy Computer Corporation. 

Referenres 

[I] Christian Bischof and Charles Van Loan. "The WY representation for products of Householder 
matrices." Report TR-85-681, Cornell University Computer Science Department, 1985. 

[2] K.A. Braun and Th. Lunde Johnsen. "Hypermatrix generalization of the Jacobi and Eberlein 
method for computing eigenvalues and eigenvectors of hermitian and non-hermitian matrices." 
Computer Methods in Applied Mechanics and Engineering 4 (1974) 1-18. 

[3] R.P. Brent and F.T. Luk. "The solution of singular value and symmetric eigenvalue problems 
on multiprocessor arrays." SIAM Journal on Scientific and Statistical Computing 6 (1985) 
69-84. 

[4] O.E. Bn1lnlund and Th. Lunde Johnsen. "QR-factorization of partitioned matrices." Computer 
Methods in Applied Mechanics and Engineering 3 (1974) 153-172. 

[5] J.J. Dongarra and D.C. Sorensen. "Linear algebra on high-performance computers." In E. U. 
Schendel, editor, Proceedings Parallel Computing 85, 3-32. North Holland, 1986. 

[6] Gene H. Golub and Charles F. Van Loan. "Matrix Computations." Johns Hopkins, 1983. 

[7] N. J. Higham. "Computing the polar decomposition - with applications." SIAM Journal on 
Scientific and Statistical Computing 7 (1986) 1160-1174. 

[8] N.J. Higham. "Computing a nearest symmetric positive semi-definite matrix." Numerical 
Analysis Report No. 126, University of Manchester Department of Mathematics, Nov. 1986. 



www.manaraa.com

207 

[91 Franklin T. Luk and Haesun Park. "A proof of convergence for two parallel Jacohi SVD 
algorithms." Report EE-CEG-86-12, ComeiJ University School of Electrical Engineering, Nov. 
1986. 

110] V. Pan and J. Reif. "Efficient parallel solution of linear systems." In Proceedings of the 
Seventeenth Annual ACM Symposium on Theory of Computing, (1985) 143-152. 

il1l B. Parlett and R. Schreiber. "Block reflectors: Theory and computation." SIAM Journal on 
Numerical Analysis, to appear. 

[12! R. Schreiber. "Computing generalized inverses and eigenvalues of symmetric matrices by 
systolic array." in R. Glowinski and J. L. Lions, editors, Computer Methods in Applied Science 
and Engineering, 285-295. North-Holland, 1984. 

[13] R. Schreiber. "Solving eigenvalue and singular value problems on an undersized systolic array." 
SIAM Journal on Scientific and Statistical Computing 7 (1986) 441-45l. 

[14] G. Schulz. "Iterative Berechnung der reziproken Matrix." Z. Angew. Math. Mech. 13 (1933) 
57-59. 

[15] David S. Scott. Michael T. Heath and Robert C. Ward. "Parallel block Jacobi eigenvalue 
algorithms using systolic arrays." Linear Algebra and Its Applications 77 (1986) 345-355. 



www.manaraa.com

The LeAP System: An Example of a Multicomputer* 

Martin H. Schultz 

1. Introduction 

Suppose we have a supercomputer which is too slow. What can we do to get more speed? It 
is now very fashionable to think of "going parallel." In this paper we describe one approach called 
the LCAP system developed by IBM/Kingston and Scientific Computing Associates (SCA). The 
goals of the LCAP project were to: 

1. develop a prototype parallel computer system using standard off-the-shelf supercomputers as 
nodes so that experimental research in parallel algorithm and programming languages could 
be initiated as fast as possible; 

2. make the system easy to use for noncomputer scientists, which meant using a parallel program­
ming environment consisting of Fortran and simple parallel programming extensions; 

3. keep the system simple, relatively inexpensive, and cost effective which meant in practice using 
FPS-X64 machines as the nodes; and 

4. allow incremental extention of the system as more computer power was needed and financial 
resources were available. 

Point (4) is increasingly important in today's real world of insatiable demands for cpu cycles 
and limited financial resources. 

Designing a successful parallel multiprocessor demands that we pay attention to (1) archi­
tecture, eg., we need to know what we can build at reasonable cost, (2) parallel algorithms and 
their analyses, i.e., we need to understand how parallel algorithms of interest perform on differ­
ent architectures, and (3) programming because we need to implement our parallel algorithms on 
the parallel architecture. Not all parallel algorithms or parallel architectures may be equally easy 
to program. Furthermore, it may be possible to modify either the algorithms or architecture to 
make the programming and debugging significantly easier. Clearly understanding and optimizing 
the interaction of parallel architectures, algorithms, and programming languages is likely to yield 
a bigger payoff than optimizing each of these facets of parallel computation in isolation from the 
others. 

2. Architectures 

When we consider architectures for scientific computing there are a number of interrelated 
issues: (1) What is the granularity of the nodes in the parallel system? The range is enormous 
from bit serial, ego in the Connection Machine, to vector processors, ego in the Cray-XMP or 
ETAlO, to tightly coupled vector processors, ego the Alliant FX-8s in the Ceder system. (2) What 
is the interconnect among the nodes? The possibilities include, a bus, a ring, a hypercube, a switch. 
(3) Where is the memory located? Is it all private? Is it essentially all public (shared)? Is it some 
combination of private and public? 

A surprisingly large number of the currently available commercial and even experimental sys­
tems are based on a bus or switch or a ring architecture. These systems vary in two very important 
regards: (1) Do they have shared memory? and (2) If they do have shared memory, do they have 
significant private memories? By significant we mean that the private memories are large enough 
to store the data sets required for nontrivial problems in a distributed fashion. We can use the 
following table to classify some systems: 

• This Research was supported in part by ONR Grant NOO014-86-K-0310 and IBM/Kingston 



www.manaraa.com

210 

Shared Memory No Shared Memory 
Small Large Large 
Private Private Private 
Memory Memory Memory 

Ring 
Warp 

LCAP CYBERPLUS 
Saxpy 

Bus/ 
Alliant ETAlO 

IPSC 
Encore LCAP 

Switch 
Sequent Cedar 

T-SERIES 
Hypercube 

Cray Flexible 
NCUBE 

Table 1: 

As we will see, algorithm analysis tells us that if we have enough private memory to store 
the problem data in a distributed sense, we can often get by with an order of magnitude less data 
movement than if we have to store the data in public memory. We will see this phenomena in 
action in our second concrete example of Section 4. The reason is that if we assign the location 
of the data intelligently to take advantage of locality, i.e. the data a processor needs is either in its 
own memory or the memory of its neighboring nodes, then only a small fraction of the data need 
be moved among the nodes. This is a very important observation which allows one to think about 
machines which are efficient even for a large number of powerful vector nodes. 

Now we may ask ourselves: What is the simplest, fast interconnect we knew how to build at 
reasonable cost? After some consideration most people would come back with the answer: A bus. 
In fact, the interconnect in the IBM LCAP system is based on SCA buses and SCA shared bulk 
memories. The processors in LCAP1 are FPS-l64s while the processors in LCAP2 are FPS-264s. 
Here are a few facts about the SCA shared bulk memory system: Based on 256K bit parts, each 
SCA shared bulk memory box can hold up to 128 megabytes. Each box can be connected to up 
to three distinct SCA buses. Each bus has a bandwidth of 44 megabytes/sec and can support up 
to four memory boxes and four processors; the limiting factor being largely bus length. Finally 
each FPS processor can be on a number of different buses. These flexible components provide a 
"toolbox" which allows us to design a variety of multicomputer systems. The LCAP systems each 
have 10 processors and 4 SCA memory boxes on three SCA buses to form the global shared bulk 
memory. 

In addition, LCAP1 and LCAP2 have a ring structure which is built by using locally connected 
SCA buses and shared bulk memories, [1, 2, 3]. Thus the LCAP architectures naturally supports 
either shared memory or ring models of parallel computation. 

There are a few additional observations we need to make concerning the LCAP architecture. 
Because each processor is a fully capable computer it not only can support a large private memory 
but also a powerful I/O system with mechanical disk systems, data displays, and data acquistition 
subsystems. This automatically provides us with a parallel I/O system which can be very important 
in practice. The fact that the shared memories are bulk memories means that they are relatively 
low cost and therefore large amounts of memory can be afforded. Of course, the price we pay in 
performance over shared random access memory is that we get effective high transfer rates only for 
long vectors (as distinct from scalars), there is a nontrivial latency or startup cost in performing 
an I/O event, but the actual rate of transfer is quite high. However, as we will see in our examples 
this is usually not a problem in this context. Since we can afford to replicate the bulk memories, 
they can be used in two fashions: (1) as a private virtual solid state disk for each processor and (2) 



www.manaraa.com

211 

as a mechanism for storing data which must be shared among the processors. In fact, the LeAP 
system has seA software to support both shared memory and message passing protocals. 

3. Algorithm Genera~ Considerations 

Parallel algorithm analysis plays an important role in the assessment of parallel systems. 
Unfortunately traditional numerical analysis which provides algorithm analyses strictly in terms 
of arithmetic operation counts is not adequate. Data movement and location must be considered. 
Thus we need to reconsider virtually all of numerical analysis not only to find and formulate parallel 
algorithms but to carry out a new kind of analysis. 

Since the runtime Trun of any parallel algorithm can be bounded above and below by expres­
sions involving T1/ O + Tcpu where T1 / O is the time devoted to moving the data and Tcpu is the 
time devoted to computation in the following manner: 

(1) 

we carry out all algorithm analysis in terms of T1/ O + Tcpu. In effect, we are making the implicit 
worst case assumption that a node can not simultaneously move data and do computation. In­
equality (1) shows that this assumption may be pessimistic by at most a factor of 2. In general 
algorithm analysis for parallel algorithms yields results of the form: 

(2) 

where the first term is the data communication latency ( f(k) is monotonically nondecreasing as 
a function of k), the second term is the time for data transfers (-1 ::; a ::; 1, b = rate of data 
transfer between a single processor and the shared memory), and the third term is the time for 
computation (8 = rate of computation). hi multiprocessors which have only private memories 
and no capability for pipelining mulithop data communication, f(k) is often determined by the 
need to broadcast data from one processor to all the others, i.e., f(k) is the "diameter" of the 
multiprocessor. Domain decomposition is a common technique for developing parallel algorithms 
for partial differential equations. Geometrical considerations of physical space determine that 
usually q = p - 1 which means that domain decomposition algorithms entail an order magnitude 
less data communication then computation. Furthermore, one dimensional domain decomposition 
on multiprocessors without shared memory has a = o. 

4. Two Specific Algorithms 

A large number of parallel algorithms have been developed, analyzed, implemented and bench­
marked for the LeAP systems, [1, 2] . By and large these parallel algorithm efforts have been 
extraordinarily successful and have yielded very high efficiencies or speedups. In this section we 
present and analyze two simple algorithms of general interest: (1) two dimensional FFT and (2) 
the five-point finite difference filter. The first problem illustrates the effective use of the global 
shared memory while the second problem illustrates the use of the ring architecture if the private 
memories are large enough. If the private memories are not large enough to store the data, then 
the global shared memory must be used to store all the data and the efficiency of the resulting 
algorithms may be inadequate. This will dramatically illustrate the possible deficiency of multi­
processor systems without adequate private memories for some problems. We feel that this may 
be an important observation as many commercially available systems do not have adequate private 
memories to store all the data required for large scale scientific computations. 



www.manaraa.com

212 

As our first concrete example, we consider the parallel computation of two dimensional fast 
Fourier transforms (FFTs). These transforms are central to many image processing applications 
and spectral methods for solving partial differential equations. 

We assume that the complex-valued double precision data is given on an N x N grid and that 
there is enough private memory so that it is initially distributed by rows to all the processors, i.e., if 
there are k processors, each processor has N /k of the rows. We remark that in many applications, 
for example, in the use of spectral methods for time dependent partial differential equations, we 
have to do many two dimensional FFTs so it is expedient to have the data distributed among the 
processors if at all possible. 

The algorithm is essentially given by the following major steps: 

1. In parallel, each processor does !f one dimensional FFTs in the x-variable on the data in its 
private memory; 

2. In parallel, each processor writes its x-transformed data (as single block row of k !f x !f blocks) 
to the shared memory; 

3. In parallel, each processor reads its appropriate x-transformed block column data from the 
shared memory (requiring k separate reads each of a !f x !f block); 

4. In parallel, each processor does !f one dimensional FFTs in the y-variable on the data in its 
private memory. 

We remark that if another two dimensional FFT or inverse FFT is now required we treat 
the variables in the reverse order, i.e., y. and then x, to avoid an extra transpose of the data. 
Furthermore, since it is a low order term, we will ignore the time required to do the transpose of 
subblocks in each processor (actuually between steps 3 and 4). 

The total time required for this algorithm is bounded by the time required for each processor 
to do 2 x !f one dimensional FFTs plus the time required for all processors to write and read to 
and from the shared bulk memory, i.e., 

TIME ~ TIME(FFT) + TIME(WRITE) + TIME(READ). (3) 

In addition, we have the following bounds: 

TIME(FFT) < 2 N (5N log N) 
- k S ' (4) 

where S is the rate at which each processor can do 64-bit arithmetic operations and k is number 
of processors. 

TIME(WRITE) ~ ~: + 2~2 , (5) 

where T is the read/write latency to the shared memory k' is the maximum number of processors 
that read or write simultaneously and B is the total bandwidth to the shared bulk memory. We 
remark that B ~ k' b, where b is the maximum I/O bandwidth of each processor, and k* is dependent 
on the number and structure of the buses and memory boxes in the shared bulk memory. Our bound 
for TIME(WRITE) assumes the worst possible case that only one processor can write at a time. 
Finally we have 

k 2 2N2 
TIME(READ) ~ k* + B' (6) 

Putting these bounds all together we have 



www.manaraa.com

213 

TIME < (~ k 2) T 4N2 N (5N log N) 
- k* + k* + B + 2 k S . (7) 

This expression shows that for most reasonable systems the run time at first goes down as 
we increase k but then reaches a point of diminishing returns and starts to increase. Eventually, 
system is spending all its time moving data around and not doing any useful computation. 

For the LeAP1 system at IBM/Kingston, b = 5.5 megawords/sec, B = 16.5 megawords/sec, 
T = 70 microseconds, k = 10, k* = 3, and S = 11 megaflops/sec. This implies that for LeAP1, 

4 x 106 10 X 106 X 10 
TIME < (3.3 + 33.3) (70 x 10-6) + 6 + 6 seconds 

- 16.5 x 10 10 x 11 x 10 

~ (2.3 + 242 + 910) x 10-3 seconds = 1.16 seconds. 

This yields a computational efficiency equal to . 

. 910 ()1 
-- x 100 ~ 78.5/'0, 
1.16 

which is quite respectable for 10 very fast processors. 

(8) 

(9) 

Now we assume the processors have private memories which are large enough to hold only a 
single row and its transform. Now we need to use the shared memory to hold the data and in 
essence each processor can read or write only a single row or column at a time which can have a 
very dramatic effect on the latency part of the total time. In fact we have 

TIME = TIME(FFT) + 2(TIME(READ) + TIME(WRITE)) 

where TIME(READ) is now bounded by 

(10) 

N 2 2N2 N 2 2N2 
TIME(READ) < -T + - = -T + - (11) 

- k* k*b k* B 
where k* :::; k is maximum number of processors that can read or write simultaneously. The 
corresponding bound for the writing phase is given by 

N 2N2 
TIME(WRITE) :::; k* T + B' (12) 

Thus, 

TIME < (N N 2) T 4N2 2~ (5NlogN) 
- k* + k* + B + k S . (13) 

Using the same parameters as we used before for the LeAP1 system except for the amount of 
memory on each processor, we get 

TIME ~ (333 + 333 x 103 ) (70 x 10-6 ) + 1.15 seconds 

= 333 x 70 x 10-3 + 1.15 seconds = 23.3 + 1.15 seconds ~ 24.5 seconds. 
(14) 

This yields an efficiency of 4.7% which is a disaster. We can evaluate the performance of hypothet­
ical type LeAP1 systems for both large and small private memories and for k* = 1,3, and 10 to 
get the following table: 



www.manaraa.com

214 

k* = 1 k* - 3 k* - 10 
Large 
Private 56% 78.5% 92% 
Memories 
Small 
Private 1.3% 4.7% 11.4% 
Memories 

Table 2: Efficiency of a Two Dimensional FFT 
Algorithm on LCAP 1 with 10 Processors 

Clearly the results of Table 2 are a disaster for multiprocessor systems with small private 
memories and shared bulk memories. There are two fixes for such systems: 

1. increase the private memories and do the subblock transposes locally (the LCAPI solution); or 

2. replace the shared bulk memory by shared random access memory to eliminate the large la-
tency. 

In option (2) it is actually adequate to use a shared bulk memory with an interface which supports 
full speed reads or writes into the memory with addresses differing by a constant stride. This 
capability would allow us to do a transpose of the data "on the fly." 

While the second fix takes care of the inefficiencies for the two dimensional FFT and as such 
may be important, it does not help in improving the efficiency of our second problem that we 
consider now. 

Our second concrete example is the problem of applying a five point filter to each point, Uij, 

of a N x N array of real numbers. Specifically, we consider the operation 

Uij <- 4Uij - (Ui-j,j + Ui+1j + Ui,j+1 + ui,j-d (15) 

for all 1 :<::: i, j :<::: N where we take Uo,j = uN+l,j = Uj,o = Uj,N+l = 0 for all 1 :<::: j :<::: N. 
This is a common kernel of many scientific computations. For example it arises naturally in 

image processing algorithms, in implicit finite difference approximations to time dependent partial 
differential equations, and in iterative methods for solving sparse linear systems. 

We consider one dimensional domain decomposition for this problem, i.e., we divide the array 
into k vertical (or horizontal) slices or subdomains and have each processor apply the filter to all 
the points in one of the subdomains. First we consider the case in which the processors have enough 
memory so that the data can be stored locally in a distributed seRse. Thus, we assume that the 
data for each sub domain is stored in the appropriate processor's private memory. Clearly when a 
processor computes the filter for its boundary points it may need to have data from as many as 2N 
points from two other processors. This data is shared by having each processor write its boundary 
data, which is to be shared, to the shared memory and then read its "neighbors" data that it needs. 

We have the following bound: 

TIME:<::: TIME(FILTER) + TIME(WRITE) + TIME(READ), (16) 

where 



www.manaraa.com

215 

lON2 
TIME(FILTER) :':: ---,;s 

TIME(WRITE) < ~T 2Nk = kT 2Nk 
- k' + k'b k' + B 

2k 2Nk 2kT 2Nk 
TIME(READ) < -T + - = - + -. 

- k' k'b k' B 
Hence, 

TIME < 3kT 4Nk lON2. 
- k' + B + kS 

(17) 

For our generic example of LeAP 1 (k' = 3, k = 10), we get the following bound in milliseconds 
for N = 1000: 

TIME :':: 3 X 10 X ;0 X 10-
3 + 4 :6~~0 I~31O + 10 ~ ;1 ~:03 milliseconds 

= .70 + 2.4 + 90.9 = 94.0 milliseconds 

This yields an efficiency of about 97% which is excellent. 

(18) 

Second we consider the case of processors whose memories are too small to hold the N X N 
array in a distributed sense. In this case the entire array has to be read from shared memory, 
filtered and then written back to shared memory. The number of startups in this case depends 
on the amount of private memory on each processor and will by 0(N2) as N -> 00, which is very 
unfortunate. Since we don't know the amount of private memory in this case, we'll be content to 
give a lower bound to the time by ignoring the latency. If we do this we get 

TIME> 2N2 lON2 . 
- B + kS (19) 

For our LeAPI example, we get the lower bound 

2 X 106 •. 
TIME :':: 16.5 X 103 + 90.0 millIseconds 

(20) 
~ 121.2 + 90.9 milliseconds ~ 222 milliseconds 

which yields an efficiency of at most about 41%. This is not a good result, although it is not a 
complete disaster. Moreover, the efficiency can not be improved by upgrading the shared bulk 
memory to a shared random access memory. 

As with example 1 we can complete a table giving efficiencies of a variety of LeAP type systems 
for k' = 1,3, and 10. The results appear in Table 3. 

Table 2 and Table 3 illustrate the effectiveness of LeAP-like multicomputer parallel systems 
with large private memories and shared bulk memories. Similar results have been obtained by a 
number of investigators for other problems, [1, 2, 3]. 



www.manaraa.com

216 

k* = 1 k* = 3 k* = 10 
Large 
Private 93% 97.5% 
Memories 
Small 
Private 20% 41% 
Memories 

Table 3: Efficiency of 5-Point Algorithm 
on LCAPI with 10 Processors. 

References 

99% 

71% 

[1] E. Clementi, J. Detrich, S. Chin, G. Corongiu, D. Folsom, D. Logan, R. Caltabiano, A. 
Carnevali, J. Helin, M. Russo, A. Gnudi, and P. Palamidese, Large-Scale Computations 
on a Scalar, Vector, and Parallel Supercomputer, Parallel Computing, North Holland, 
5 (1987), pp. 13-44. 

[2] P. Leca, Programming Loosly Coupled Multi-FPS System with Message Passing Primitives: 
Experiment in Implementing A.D.I. Method on LCAPI System, Proceedings of the 
Second International Conference on Supercomputing, 1987. 

[3] Scientific Computing Associates Inc., Shared Bulk Memory Systems, Manual, Scientific Com­
puting Associates Inc., 1985. 



www.manaraa.com

A BLOCK QR FACTORIZATION SCHEME FOR LOOSELY 
COUPLED SYSTEMS OF ARRAY PROCESSORS 

CHARLES VAN LOANt 

1. Introduction. Computing the QR factorization of a matrix A E Rmxn involves finding 
an orthogonal matrix Q E Rmxm and an upper tringular matrix R E R mxn such that A = QR. 
This factorization has a prominent role to play in numerical linear algebra especially because of 
its bearing on the least square problem. A detailed description of the QR factorization and the 
various ways that it can be computed may be found in Golub and Van Loan (1983). 

Parallel methods for computing the QR factorization have received considerable attention 
recently. For systolic arrays attention has focused on methods that rely on Givens rotations. See 
Gentleman and Kung (1981) or Heller and Ipsen (1983). Dongarra, Sameh, and Sorenson (1986) 
have implemented both parallel Givens and parallel Householder procedures on the Denelcor Hep. 

In this paper we discuss a block version of the Gentlemen-Kung method that we have im­
plemented on the IBM Kingston LCAP-I. This system consists of ten FPS-164 array processors 
(APs) that can communicate through several shared bulk memories. An overview of LCAP-1 is 
offered in Clementi and Logan (1985). The features of LCAP-1 that figure in the current work are 
depicted in the following diagram: 

There are actually two levels of parallelism here because the APs are each capable of performing 
twenty parallel dot products. Indeed, the FPS-164/MAX's at Kingston each come equipped with 
two "MAX boards". The MAX Board enhancement enables each AP to perform matrix-matrix 
multiplication at a peak rate of 55 Mflops if the matrices involved are sufficiently large. Full ex­
ploitation of the FPS-164/ MAX requires having an algorithm that is rich in matrix multiplication. 
This is why we have chosen to develop a parallel block procedure. The blocking of the matrix A is 
largely a function of the 164/MAX architecture. For example, it turns out to be efficient to have 
block columns that are a multiple of twenty simply because the LCAP-1 APs can each perform 
twenty parallel dot products. Further details concerning the FPS-164/MAX architecture may be 
found in Charlesworth and Gustafson (1986). 

The matrix A is stored in a 64 Mword bulk memory unit manufactured by Scientific Computing 
Associates (SCA). Thus, a dense problem of size 16K-by-4K could potentially be solved. The APs 
have approximately 600 K words of usable memory. This is enough to house, for example, a 1000-

by-500 submatrix. 

Data between the APs and the bulk memory flows at a rate of 44 Mbytes/sec. However, high 
latency associated with each transferred message demands that data be moved in fairly good-sized 
chunks in order to be efficient, e.g., 1000 words. 

tDepartment of Computer Science, Cornell University, Ithaca, New York 14853 



www.manaraa.com

218 

Additional nuances of the LCAP-l system as they apply to our QR implementation are detailed 
later. 

This paper is the first of several reports in which we explore the issues associated with parallel 
matrix computations on the LCAP-I. The parallel block QR factorization scheme that we encoded 
is derived in §2 and §3. Implementation details are covered in §4 and results in §5. Our current QR 
code can be improved in several ways as we often opted for the "easy way out" when confronted 
with an algorithmic dilemma. Despite this we feel that our LCAP-l experience offers general 
perspective on large scale distributed matrix computations. 

2. Parallel Givens QR. We say that G E Rmxm is an adjacent Givens rotation in planes 
i-I and i if G is the identity with the following 2-by-2 exception: 

[
gi-l,i-l 

gi,i-l 

[ 
cos(O) 

- sin(O) 

sin(O) ] 

cos(O) 

Notice that G is orthogonal and that premultiplication by G affects just rows i-I and i. If x E Rm 
then it is not hard to determine (cos(O), sin(O)) so that Yi = 0 if Y = Gx. These and other Givens 
rotations issues are discussed in Golub and Van Loan (1983, pp. 43-47). 

Adjacent rotations are important because they only combine adjacent rows or columns when 
applied to a matrix. Moreover, they can be used to compute the QR factorization of a matrix. 
Assuming A E Rm x n (m 2: n) we have: 

Algorithm 2.1. 

For j = I:n 

end j 

For i = m : -I : j.1 

end i 

Determine an adjacent Givens rotation Gij such 

that if y = Gij TA(; ,j:D then Yj = 0, i.e., zero aij . 

A:= G·.TA IJ 

Upon completion A is overwritten by R and 

Notice that the algorithm computes R column-by-column and that the zeroing within a column 
proceeds from the bottom up to the sub diagonal. Here is a depiction of the 4-by-3 case: 



www.manaraa.com

219 

xxx xxx xxx xxx xxx xxx xxx 
xxx __ xxx __ xxx __ OXX __ OXX __ OXX __ OXX 

xxx xxx OXX OXX OXX OOX OOX 

xxx OXX OXX OXX OOX OOX 000 

To indicate the inherent parallelism in this procedure we resort to a slightly larger example 
and number the aij in the order that they are zeroed: 

x X X X 

8 X X X 

7 15 X X 

6 14 21 X 

5 13 20 26 m =·9, n = 4 
4 12 19 25 
3 11 18 24 
2 10 17 23 

9 16 22 

Recognize that the computation and application of Gij can begin as soon as Gi-l,j-l is applied 
to A. To illustrate this we tabulate the earliest "time step" that aij(i > j) can be zeroed: 

X X X X 

8 X X X 

7 9 X X 

6 8 10 X 

5 7 9 II m=9,n=4 
4 6 8 10 
3 5 7 9 
2 4 6 8 

3 5 7 

With this notation we see in the example that four Givens updates can be performed during the 
seventh time step: Gal, GS2 , Gn , and G94 . If we had 4 processors then they could each be assigned 
one of these tasks. 

The parallelism that we have exposed in the above example can be formalized by rearranging 
the loop indexing in Algorithm 2.1 and noting that m + n - 2 timesteps are required. 



www.manaraa.com

Algorithm 2.2. 

220 

For k = I: m+n-2 

For All j = I:n 
i = m-k+I+2(j-l) 

if ( ism & i ~ j+1) 

end 
end j 

end k 

Determine Glj to zero aij 

A:= Gij l A 

The "For All" statement reminds us that all of the updates A := G'fjA associated with a given 
time step k are independent and can be performed in parallel. 

We point out that Gij can actually be computed "earlier" than we have indicated. For example, 
in the (m, n) = (9,4) case above, we have assumed that Ggz is computed as soon as GS1 has been 
applied all the way across the matrix. In fact, Ggz can be computed as soon as GS1 has been 
applied to just the second column. For reasons that we given in §4, we have not implemented the 
"soon as possible" generation of Gij . 

Algorithm 2.2 and its natural variants can be mapped nicely onto systolic networks. See Heller 
and Ipsen (1983). 

3. A Parallel Block QR Factorization Method. Some notation is required before a block 
version of algorithm 2.2 can be specified. Partition A E Rmxn as follows: 

A (3.1) 

Here, Aij is mi - by - nj and we assume that mi :2: nj for all i and j. If Q is an orthogonal matrix 

of dimension mi-l + mi then we refer to 

as an adjacent "block Given" rotation in block planes i-I and i. 



www.manaraa.com

221 

Algorithm 3.1 (Block Givens QR Factorization). 

Fork = 1: p+q-2 

For All j = l:q 
i = p-k+l+2(j-l) 

if ( i ~ p & i ::! j+ 1 

Determine orthogonal Qij such that 

end 
end j 

end k 

0,,' [ ~j'.J 1 "[: 1 (R "DPoe td,,,,",,,) 

Set Gij = Gi (Qij) and update A:= Gij T A 

This procedure is identical to Algorithm 2.2 except that blocks are zeroed instead of scalars. Upon 
completion A is overwritten with a block upper triangular matrix R. Unless all the Aij are square, 
then R will not be upper triangular as a scalar matrix. For example, if the partitioning in (3.1) is 
defined by (mj,m2) = (3,3) and (nj,n2) = (2,2) then Algorithm 3.1 overwrites A with 

x X X X 
o X X X 

R= o 0 X X 
o 0 X X 
000 X 
o 0 o 0 

Of course, it is possible to upper triangularize this matrix with further Givens operations, but that 
is an annoying but necessary follow-up computation. 

However, there is a more serious problem associated with rectangular blocks. Consider the 
example (mj,m2,m3,m4) = (2,3,3,8) , (nj,n2) = (2,2). At the beginning of the second time 
step A looks like 



www.manaraa.com

222 

x x:x x 
x x'x x 
x x:x x 
x x x x 
x x x ~ 
x x x x 
0 x x x 
o 0 x 
o 0 x 
o 0 x 
o 0 x x 
o 0 x x 
o 01 x x 
o 0

1 

x x 
o 0 x x 

° ° x 
x 

At this stage, Algorithm 3.1 specifies that we only upper triangularize the submatrix A(3:8,1:2), 
i.e., the subproblem defined by blocks A21 and A3l . However, we see from the figure that a 
sigJ;lificant amount of zeroing in the second block column can take place concurrently. In particular, 
we could upper triangularize both A(3:8,1:2) and A(9:16,3:4). 

In general, because the "bottom" submatrix Aij in each subproblem is upper triangular, 
"taller" submatrices can be upper triangularized throughout Algorithm 3.1. In order to rear­
range this algorithm so that "maximally tall" subproblems are solved at each stage, we need to 
drop the fixed row blocking in (3.1). We continue to assume that A has q block columns with 
widths n) ... n q . However, instead of imposing a fixed blocking of A's rows we have chosen to de­
termine the "height" of the subproblems throl}gh an integer parameter mo that satisfies mo :::: nl' 
In our scheme, the subproblems in the first block column involve at most mo rows. Maximally tall 
subproblems are then solved in subsequent block columns at each step. To illustrate, consider the 

case m = 100, mo = 20, and (nl,n2,n3,n4) = (2,3,5,5): 



www.manaraa.com

223 

Subproblem Row Ranges 

Time Step Column Ranges 

1:2 3:5 6:10 11:15 

81:100 
2 63:82 83:100 
3 45:64 65:85 86:100 
4 27:46 47:67 68:90 91:100 
5 9:28 29:49 50:72 73:95 
6 1:10 11:31 32:54 55:77 
7 3:13 14:36 37:59 
8 6:18 19:41 
9 11:23 

In general four integers rowsrt(i,j), rowend(i,j), colsrt(j), and colend(j) are necessary to describe 
subproblem (i,j), e.g., 29, 49, 3, and 5 for subproblem (5,2). These index arrays and the total 
number of time steps if required can be computed as follows: 

Algorithm 3.2. Let m, n, ma, q and the column partitioning (nl, ... , nq) be given with m :::: n 
and ma > nl' This algorithm determines if and the index arrays colsrt(l : q), colend(l : q), 
rowsrt(l: if, l:q), and rowend(l: if, 1: q). 



www.manaraa.com

224 

tf = ceiling( max(O,m-mo) / (mO-nl) ) + q 

Fort =1: tf 

if t = 1 

else 

For j = l:q 
if J = 1 

else 

end 

colsrt(l) = 1 
colend(1) = nl 
rowsrt(t,j) = max( 1 ,m-mo· I) 

colsrt(j) = colend(j-l) + 1 
colend(j) = colend(j-I) + nj 

rowsrt(t,j) = m 

rowend(t,j) = m 
end j 

For j = l:q 
if j = 1 

rowend(t,1) = rowsrt(t-I,I) • nl - I 
rowsrt(t,1) = max(I, rowend(t,J)-mo·l 

else 
rowend(t,j) = mine rowsrt(t-l,j) + nj - I ,m) 

rowsrt(t,j) = max( colsrt(j), mine rowend(t,j-J) +1, m)) 
end 

end j 
end 

end t 

A couple of comments are in order. In block column 1, the subproblems "climb" at the "rate" 
ma -nl and so 1+ ceiling(max(O, m-ma)/(ma -nl)) steps are required to complete the processing 
of block column 1. Thereafter one block column per time step is completed. This explains the 
formula for t f and why we must have ma > nl. 

In block columnj, "serious" computation does not begin so long as rowsrt(t,j) = rowend(t,j) = 
m. After block column j is fully triangularized, rowsrt(t,j) = colsrt(j) and rowend(t,j) = 

colend(j), conditions that normally signal that there is "nothing to do" in block column j. (An 
exception occurs when rowsrt(t,j) = colsrt(j) and rowend(t,j) = colend(j) = m.) 

With subproblems specified by Algorithm 3.2 we can now describe the overall factorization 
procedure. 

Algorithm 3.3 (Maximally Tall Block Givens QR Factorization). 

Given m, n, ma, q, the column partitioning (nl, ... , nq) with m :::: nand ma > nl, the following 
algorithm overwrites A E R mxn with upper triangular R = QT A where Q is orthogonal. 



www.manaraa.com

225 

Compute tr ' rowsrt(1:t r ,I:q) ,rowend(l:t r ,I:q), 

colsrt(l:q), and colend(l:q) using Algorithm 3.2 

For t = I : t r 
For i = 1:'1 

it = rowsrt(t,j) 
iz = rowend(t,j) 
it = colsrt(j) 
iz = colend(j) 
ir ( it = iz = m or (it = it & iz = iz & h :< m ) ) 

"Nothing to do.· 

else 

end 

end i 
end t 

Compute: A(it:iz,it:h) = OR . 
Apply: A(il:iz.it:n) := OTA(iI:iz,it:n) 

4. Implementation. In this section we discuss three issues associated with the implemen­
tation of Algorithm 3.3 on the LCAP-1 system: how A is arranged in shared memory, how the 
subproblems are solved, and how block column tasks are mapped onto processors. 

The Storage of A. At time step t, the relevant row and column delimiters for the j - th 
subproblem are i 1 = rowsrt(t,j), i2 = rowend(t,j), jl = colsrt(j), and h = colend(j). Here is 
what the array processor in charge of this subproblem must accomplish: 

(1) Read A(il : i 2 ,jl : j2) from shared memory. 

(2) Compute an orthogonal Q such that QT A(il : i 2 ,jl : j2) = R is upper triangular. 

(3) Write the updated A(ij : i 2 ,i1 : j2) back into shared memory. 

(4) Read A(il : i 2 ,jl + 1: n) from shared memory. 

(5) Apply QT to A(ij : j2,jl + 1: n) . 

(6) Write the updated A(il : i 2 ,h + 1: n) back into shared memory. 

We assume that A(i1 : i 2, ,jl : j2) can fit into local memory but that because of its size, the 
processing of A( i 1 : i 2 , h + 1 : n) may have to proceed in "chunks". That is, steps 4-5-6 may have 
to be repeated with a manageable segment of columns from A(i j : i 2 ,h + 1: n) each time. Note 
that Q stays in the AP during this process. Because one AP is responsible for applying a given 
Q, there is no need to pass Q on to another AP. 

There is an overhead associated with traffic to and from shared memory. Reads and writes 
to shared memory are accomplished with a "move" command and can only involve continuous 
portions of memory. Using move to transfer n floating point words takes 

T(n) = (100 + 8n/44) f-lsec 

Note that the 100 f-lsec startup degrades the 44mb/sec peak transfer rate. Thus, a vector of length 
1000 takes 281 f-lsec to move for an effective data transfer rate of 28 mb/sec. 



www.manaraa.com

226 

From the standpoint of processing the subproblem at hand, it would be ideal if A( i l : i 2 , j 1 : n) 
was continuous in shared memory for then a minimum number of moves would be required to 
carry out steps 1,3,4, and 6 above. For example, to read a contiguous 1000-by-500 sub matrix 
from shared memory would require T(500,000) = .09 sec (= 44mb/sec). Unfortunately, storing 
by blocks in Algorithm 3.3 would impose significant buffer requirements and some tedious data 
manipulation within each AP. The buffer issue is fairly important because the AP's we used have 
limited local memory (f'::: 600 Kwords). 

Because we didn't want addditional buffer requirements to limit further the size of "working" 
memory we chose to store A in column major order. This implies that r moves are required to move 
a sub matrix with r columns. Thus, to read a 1000-by-500 submatrix requires 500· T(1000) = .14 
sec (= 28 mb/sec). This is actually a typical size for a submatrix move in our algorithm. When 
the overall implementation is considered, we can easily live with a 28 mb/sec data transfer rate. 

Subproblem Solution. The basic computation in Algorithm 3.3 consists of computing a QR 
factorization and then applying the resulting orthogonal matrix to the "rest of A". The normal 
"Linpack" way to compute a QR factorization of a matrix C E Rmoxno is to use Householder 
matrices. A Householder matrix is an orthogonal transformation of the form 

P = 1- 2vvT v E Rmo, IIvl12 = 1. 

In the Linpack QR procedure Householders PI, ... , Pno are generated so that Pno ... PI C = R is 
upper triangular. Note that Q = Pl'" Pno ' 

We now consider the computation QT B where B is some matrix. If Q is represented as a 
product of Householders, then the resulting algorithm is "rich" in matrix-vector multiplications. 
This is fine for many architectures. However, to exploit fully the FPS-164/MAX architecture, we 
need an update algorithm that is rich in matrix-matrix multiplication. We could accomplish this 
by explicitly forming the product Q = PI ... Pno before applying it to B. But this would be very 
costly since rno > > no usually. An unacceptably large rno - by - rno buffer would also be required 
by this approach. 

Instead, we have chosen to use the "WY" representation for products of Householder matrices 
that is developed in Bischof and Van Loan (1985). In this scheme rno - by - no matrices Wand 
y are generated such that 

Q = PI ... Pno = 1 + WyT 

The ensuing update B := QI; = (1 + WyT)T B = B + Y(WT B) is then obtained by a pair of 
matrix-matrix multiplications: 

(i) 

(ii) 

For (i) we used the "MAX" routine pdot that can compute twenty parallel dot products. To 
initiate the parallel dot product the relevant twenty vectors must be placed in the MAX registers 
using another MAX routine called ploadd. We examine this in some detail so that an appreciate 
of MAX board computing can be obtained. Assume that Wand Yare rno - by - no and that no 
(for simplicity) is a multiple of twenty. If B is rno - by - k then here is how the matrix Z = WT B 

is formed: 



www.manaraa.com

227 

For j = 1:20:no 

Load W(I:mo . j:j+19J.. in to the max registers using 
pload. 

For i = I:k 

Compute Z(j:j+19.i:i) = W(I:mo . j:j+19) T B(I:mo.i:i) 
using pdo!. 

end i 
end j 

The times required for each pload and pdot are approximately 

ploadd: 

pdot: 

L(mo) = 23 + 58.2*mo (!"sec) 

D(mo) = 29.7 + .738*mo (!"sec) 

Thus, Z = WTB is obtained in (no/20)(L(mo) + k· D(mo))!"sec. Since Z = requires 2monok 
flops, a calculation shows that the effective performance in megaflops is approximately given by 

Mflo (WT B) = 55 
p 1 + 40/mo + 79/k + 31/mok 

This expression reveals the penalty for short vectors (small mo) and for low re-use (small k). Here 
is a table of some representative Mflop(WT B) values: 

k = 100 k = 500 k = 1000 k = 5000 

ma = 100 25 35 37 39 

ma = 500 29 44 47 50 

ma = 1000 30 46 49 52 

ma = 2000 30 47 50 53 

Table 4.1 

We mention that because the MAX registers can handle vectors up to length 2047, the sub­
problem height parameter mo should be chosen so that rowend(t,j) - rowsrt(t,j) ::; 2047 for all t 
and j. 

We now turn our attention to the rank-no update B <- B + Y Z that makes up the second half 
of the B <- (1 + WyT)T B computation. For this calculation the FPS-164/MAX has a parallel 
saxpy capability that appears well suited. With two MAX boards it is possible to perform nine 
saxpys of the form Ci <- Ci + SiY in parallel. Note that this is a rank-one update: C <- C + ysT. 

Here is how the update of B would proceed using the parallel saxpy routine pvsma and the 
attending load/unload routines ploadv and punldv. For simplicity, assume that k is a multiple 

of 9. 



www.manaraa.com

228 

For j = 1:9:k 

end j 

Use ploadv to load B(I:mo,j:j+8) Into the max registers. 
For i = I:no 

Use pvsma to perform the update 
B(I:mo.j:j+8) ... B(I:mo.j:j+8) + Y(I:mo.i:i)Z(i:i.j:j+8) 

end i 
Use punldv to write the updated B(I:mo.j:j+8) back to memory. 

Reasoning as we did to determine Mflop(WT B), it can be shown that 

24 
Mflop( B + Y Z) = c:----::-:--;----::::-:-----::=-;---

1 + 34/mo + 70/no + 62/mono 

Note that the re-use factor is now no rather than k. This is unfortunate since in our application 
we typically have k > mo ~ no. If we look at some typical values of Mflop(B + YZ), then this is 
what we find: 

no = 20 no = 40 no = 60 no = 80 

mo = 100 4.9 7.7 9.5 10.8 

mo = 500 5.2 8.5 10.7 12.3 

ma = 1000 5.3 8.6 10.9 12.6 

ma = 2000 5.3 8.6 11.0 12.7 

Table 4.2 

Thus, pvsma is ill-suited for the B <- B + YZ update when compared to the 23-53 Mfiop 
rates sustained by the pdot computation of Z = W T B. For this reason we chose to use a new 
FPS parallel matrix multiply routine called pmmul that can perform the update B <- B + YZ 
at rates more consistent with the values in Table 4.1 

Two final comments about subproblem solution. The first concerns the recording of the orthog­
onal matrix Q. This matrix is the product of Householder matrices. Of course, these Householders 
are clustered and applied in WY form during Algorithm 3.3. But we can save all the Householder 
vectors by overwriting each zeroed sub column of A by the corresponding Householder vector. In 
particular, whenever a sub column v E Rd of A is zeroed by a Householder matrix (1 + 2uu T /u T u), 
we store u(2 : d) in v(2 : d) with the convention u(l) = 1. It is then possible to retrieve Q from 
the final array A so long as the index arrays rowsrt, rowend, colsrt, and colend are available. 

Lastly, we mention that the subproblem QR factorizations in Algorithm 3.3 are typically of 
matrices that have a band structure. Indeed, it is usually the case that 
A(rowsrt(t,j):rowend(t,j), colsrt(j):colend(j)) has lower bandwidth rowsrt(t - 1,j)­
rowsrt(t,j). This fact is exploited when the QR factorization is computed and the resulting 

WY factors found. 

Load Balancing and Scheduling. Suppose Algorithm 3.3 is to be implemented on array 
processors API, ... ,APp ' At time step t in Algorithm 3.3 there are q independent tasks to perform. 



www.manaraa.com

Task (t, j) involves 

Factoring: 

Computing: 

229 

A(rowsrt(t,j): rowend(t,j),colsrt(j): colend(j)) = QR 

QT A(rowsrt(t,j) : rowend(t,j), colsrt(j) : n)) 

Here, t and j satisfy 1 ::; t ::; t f and 1 ::; j ::; q. If p = q then an immediate load balancing problem 
arises if each block column has the same width because task (t,j) generally has more matrix to 
update than task (t,j + 1). One way around this difficulty is to make each block column wider 
than its predecessor. We illustrate this for the case q = 2 with block column widths nl and n2. 
Assuming a subproblem height of mo then approximately 2monr + 2nImOn2 flops are required 
for task (t,l). On the other hand, 2mon~ flops are required for task (t,2) if we again assume a 
subproblem height of mo. These two flop counts are approximately equal if (ndn2) R;; .62. 

For general q it is possible to work out quotients nj /nj+1 for j = 1 : q - 1 so that approximate 
load balancing results for the column partitioning nl,"" n q . Of course, in practice it would make 
more sense to base column partitioning guidelines upon benchmarks rather than upon flop counts. 
We have not pursued this. 

Instead we make the block column widths narrow enough so that the number of independent 
tasks q is significantly larger than the number p of assigned APs. Approximate load balancing is 
then achieved by assigning AP k to block columns j = k : p: q. For example, if p = 3 and q = 12, 
then API works on block columns 1,4,7 and 10, AP2 is assigned to block columns 2,5,8, and 11, 
while AP3 is applied to block columns 3,6,9, and 12. In a typical time step, each AP will work 
on 4 subproblems with a greater balance of work than if q = 3. This style of distributing tasks 
has been widely used in parallel matrix factorization work, see George, Heath, and Liu (1985). 
A fringe benefit of this approach is that we can choose block column widths to be a multiple of 
twenty. This allows for efficient exploitation of the 164/MAX architecture that permits twenty 
parallel dot products. In our examples we used uniform block column widths of twenty and thus 
q R;; n/20. 

To actually execute algorithm 3.3 in parallel on LCAP-1 we implemented a lock- step syn­
chronization scheme using "barriers". The blocking arrays rowrst, rowend, colsrt, and colend are 
determined by the host and then downloaded into the p array processors assigned to the computa­
tion. The matrix A is also downloaded into the shared memory through the APs. The AP k then 
executes the following program: 

Algorithm 4.1 (Processor k's Share of Algorithm 3.3). 

For t = l:tr 
For j = k:p:q 

Compute A(rowsrt(t,j):rowend(t,j),colsrl(j):colend(j)) = QR 
Upda Ie A(r owsr I( t,jl:r owend( Lj),colsr t(j)n) 

end j 
Barr ier 

end t 
When the barrier is encountered, execution is suspended until all the other AP programs reach 
their barrier. After this is accomplished the processing of the next time step begins. 

Further details about the LCAP-1 system software required by our implementation may be 

found in Chin and Lorenzo (1986). 



www.manaraa.com

230 

Some Results and Conclusions. In testing our implementation we ran our codes on random 
matrices A E R mxn with the property that A(l : m,l : n - l)e = A(l : m, n : n) where e 

is the vector of all ones. The correctness of R was then confirmed by checking the equations, 
R(l : n - 1,1: n - l)e = R(l : n - 1, n : n) and R(n, n) = 0. 

We report on two of the several examples that we solved using the parallel QR code. We do 
not pretend that our results are conclusive. They merely confirm some natural suspicions and 
point the way to future research. 

The first example indicates that we can get away with our lock step, coarse grained approach 
if A is large enough and suitably blocked. Here is what we found by using one, two, and three 
APs to solve an (m, n) = (5000,1000) problem with mo = 1000, q = 50, and nl = ... = n50 = 20. 

Number or Time Speed-Up Errective 
Processors (seconds) MrioD 

606 1.00 17 
2 310 1.95 33 
3 211 2.87 48 

Table 5.1 

About 25% of the elapsed time is spent on transmitting submatrices to and from the shared 
memory. To see roughly where this percent comes from consider the update B <-- (1 + WyT)T B 
of a 1000 - by - 500 submatrix B in shared memory where W, Y E R IOOO X20. If this update is 
performed at a rate of 30 Milops then approximately 1.3 seconds must be devoted to computation. 
To transfer B to or from shared memory requires about .14 seconds. Thus, the fraction of time 
spent on communication is approximately .18 ~ .28/1.58. 

We next discuss an example where the load balancing is not quite so nice, resulting in a 
degradation of performance. In the example m = 5040, mo = 1040, n = 500, q = 13, and 
nl = ... = nl2 = 40, nI3 = 20. Three APs were used and thus block column tasks are assigned as 
follows: 

API <-- (1,4,7,10,13) AP2 <-- (2,5,8,11) AP3 <-- (3,6,9,12) 

Because only five steps are required to process each block column, there are never more than 
five "active" tasks at anyone time step. This makes load balancing a little problematical. The 
following table indicates the time (in seconds) that each AP spends computing at each timestep. 



www.manaraa.com

231 

Time Step API APz AP3 

I 3.52 0.00 0.00 
2 3.64 3.15 0.00 
3 3.64 3.39 2.82 
4 3.64 3.42 3.16 
5 5.85 3.39 3.16 
6 3.10 5.31 4.83 
7 2.70 2.82 4.83 
8 2.70 2.46 2.58 
9 3.88 2.46 2.24 

10 2.05 3.42 2.24 
II 1.76 1.79 3.01 
12 1.76 1.52 1.54 
13 1.99 1.52 1.30 
14 .62 1.52 1.30 
15 .43 1.61 1.30 
16 .43 0.00 0.13 
17 .43 0.00 0.00 

Table 5.2 

The time required for the entire computation is 51.2 seconds, the sum of the maximum times in 
each row of the table. If computation was equally shared at each time step then approximately 
38.1 seconds would be required for the complete computation. 

The somewhat inefficient use of the APs highlighted by the second example could be rectified 
in several ways: 

1 Choose a smaller mo. This would have the effect of increasing the number of tasks to be 
shared at each time step. 

2 Vary the block column widths so as to even out the update work. 

3 Instead of letting the AP that generates a Q be entirely responsible for its application, 
share the update. 

We have not fully explored these possibilities. Note that the first and third suggestions imply 
smaller matrix multiplications and thereby reduced 164/MAX performance. 

A more promising way to address the load balancing issue would be to incorporate a dynamic 
scheduling of tasks as is discussed, for example, in George, Heath, and Liu (1985) and Dongarra, 
Sorenson, and Sameh (1986). One way to do this is to order the tasks (t, j) defined in §4 as follows: 

(1, 1), (1, 2), ... , (1, q), (2, 1), (2, 2), ... , (2, q), ... , (t f' 1), ... , (t f' q) 

After completing a task each AP would go to this list and "grab" the next available task subject 
to rules that preserve the integrity of tht. overall procedure. We will report on this elsewhere. 



www.manaraa.com

232 

Acknowledgements. The implementation of the algorithm described in this paper would 
not have been possible without the expert assistance of Dr. Doug Logan at IBM Kingston and my 
Ph.D. student Chris Bischof at Cornell. 

This work has been supported by ONR contract N00014-83-K-0640, the Mathematical Sci­
ences Institute at Cornell which is sponsored by the Army Research Office, and by the IBM Cor­
poration. Computations were performed at IBM Kingston and on the Production Supercomputer 
Facility at Cornell which is supported in part by the National Science Foundation and IBM. 

REFERENCES 

C. BISCHOF AND c. VAN LOAN, The WY Representation for products of Householder matrices, (1987), to appear 
in Siam J. Scientific and Statistical Computing. 

A.E. CHARLESWORTH AND J.L. GUSTAFSON, Introducing replicated VLSI to supercomputing: the FPS-164/ 
MAX scientific computer, (1986), IEEE Computer, March, 10-23. 

S. CHIN AND D. LORENZO, Parallel Computation on the Loosely coupled array of processors: tools and guidelines, 
(1986), Report KGN-25, IBM Kingston, Dept. 48B, Bldg 963, Kingston, NY 1240l. 

E. CLEMENTI AND D. LOGAN, Parallel processing with the loosely coupled array processor system, (1985), Report 
KG N-43, IBM Kingston, Dept. 48B, Bldg 963, Kingston, NY 1240l. 

J. DONGARRA, A.H. SAMEH AND D.C. SORENSON, Implementation of some concurrent algorithms for matrix 
factorization, (1986), Parallel Computing, 3, pp. 25-34. 

W.M. GENTLEMAN AND H.T. KUNG, Matrix triangularization by systolic arrays, (1982), Proc. SPIE Vol. 298, 
Real Time Signal Processing IV, 19-26. 

A. GEORGE, M.T. HEATH, AND J. LIU, Parallel Cholesky factorization on amuItiprocessor, (1985), Report ORNL 
6124, Math. Sci. Div., Oak Ridge National Laboratory, Oak Ridge, TN. 

G.H. GOLUB AND C. VAN LOAN, Matrix Computations, (1983), The Johns Hopkins University Press, Baltimore, 
Md. 

D. HELLER AND I.C.F. IpSEN, Systolic networks for orthogonal decompositions, (1983), Siam J. Scientific and 
Stat. Computing, 4, 261-269. 




